相關(guān)習(xí)題
 0  246547  246555  246561  246565  246571  246573  246577  246583  246585  246591  246597  246601  246603  246607  246613  246615  246621  246625  246627  246631  246633  246637  246639  246641  246642  246643  246645  246646  246647  246649  246651  246655  246657  246661  246663  246667  246673  246675  246681  246685  246687  246691  246697  246703  246705  246711  246715  246717  246723  246727  246733  246741  266669 

科目: 來源: 題型:解答題

8.如圖,在四棱錐C-A1ABB1中,A1A∥BB1,A1A⊥平面ABC,∠ACB=$\frac{π}{2}$,AC=AA1=1,BC=BB1=2.
(1)求證:平面A1AC⊥平面B1BC;
(2)若點(diǎn)C在棱AB上的射影為點(diǎn)P,求二面角A1-PC-B1的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{\sqrt{3}π}{4}$;表面積為$\frac{9π}{4}+\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)頂點(diǎn)是(0,1),離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知矩形ABCD的四條邊都與橢圓C相切,設(shè)直線AB方程為y=kx+m,求矩形ABCD面積的最小值與最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知橢圓G:$\frac{x^2}{a^2}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,右焦點(diǎn)為(2$\sqrt{2}$,0),過原點(diǎn)O的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線交橢圓G于點(diǎn)M.
(Ⅰ)求橢圓G的方程;
(Ⅱ)求證:$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OM}|}^2}}}$為定值,并求△AOM面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)M(4,2),且離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)R(x0,y0)是橢圓上的任意一點(diǎn),從原點(diǎn)O引圓R:(x-x02+(y-y02=8的兩條切線分別交橢圓C于點(diǎn)P,Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:OP2+OQ2的值為定值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.當(dāng)雙曲線C不是等軸雙曲線時(shí),我們把以雙曲線C的實(shí)軸、虛軸的端點(diǎn)作為頂點(diǎn)的橢圓稱為雙曲線C的“伴生橢圓”.則離心率為$\sqrt{3}$的雙曲線的“伴生橢圓”的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.平面上三個(gè)力$\overrightarrow{{F}_{1}}$、$\overrightarrow{{F}_{2}}$、$\overrightarrow{{F}_{3}}$作用于一點(diǎn)且處于平衡狀態(tài),|$\overrightarrow{{F}_{1}}$|=1(N),|$\overrightarrow{{F}_{2}}$|=$\frac{\sqrt{6}+\sqrt{2}}{2}$(N),$\overrightarrow{{F}_{1}}$與$\overrightarrow{{F}_{2}}$的夾角為45°,將$\overrightarrow{{F}_{1}}$的起點(diǎn)放在原點(diǎn),終點(diǎn)在x軸的正半軸,$\overrightarrow{{F}_{2}}$的終點(diǎn)放在第一象限內(nèi).
(1)$\overrightarrow{{F}_{3}}$的大;
(2)求$\overrightarrow{{F}_{1}}$與$\overrightarrow{{F}_{3}}$的夾角大小.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知?jiǎng)狱c(diǎn)P(x,y)在橢圓$\frac{x^2}{100}+\frac{y^2}{64}$=1上,若A點(diǎn)的坐標(biāo)為(6,0),|${\overrightarrow{AM}}$|=1,且$\overrightarrow{PM}$•$\overrightarrow{AM}$=0,則|${\overrightarrow{PM}}$|的最小值為$\sqrt{15}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),左右焦點(diǎn)分別為F1,F(xiàn)2,且兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e2-e1的取值范圍是( 。
A.($\frac{2}{3}$,+∞)B.($\frac{4}{3}$,+∞)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為底面邊長(zhǎng)的2倍,E點(diǎn)為AD的中點(diǎn),則三棱錐D-BEC1的體積為( 。
A.$\frac{8}{3}$B.4C.$\frac{4}{3}$D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案