相關(guān)習(xí)題
 0  252102  252110  252116  252120  252126  252128  252132  252138  252140  252146  252152  252156  252158  252162  252168  252170  252176  252180  252182  252186  252188  252192  252194  252196  252197  252198  252200  252201  252202  252204  252206  252210  252212  252216  252218  252222  252228  252230  252236  252240  252242  252246  252252  252258  252260  252266  252270  252272  252278  252282  252288  252296  266669 

科目: 來源: 題型:解答題

12.已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=$\frac{\sqrt{6}}{3}$,過橢圓的右焦點(diǎn)且垂直于長軸的弦長為$\frac{{2\sqrt{3}}}{3}$.
(1)求橢圓的方程;
(2)若一條不與y軸垂直的直線l交橢圓于M,N兩點(diǎn),A為橢圓的下頂點(diǎn),且|AM|=|AN|,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.F是橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的左焦點(diǎn),P是橢圓上的動(dòng)點(diǎn),A(1,1)為定點(diǎn),則|PA|+|PF|的最小值是( 。
A.9-$\sqrt{2}$B.3+$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)F1,F(xiàn)2分別是短軸長為6的橢圓E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),且△ABF2的周長為16.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)P為E上一點(diǎn),若PF1=3,求PF2的長度.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知橢圓C與雙曲線$\frac{{x}^{2}}{2}$-y2=1有相同的焦點(diǎn),且橢圓C的離心率為e=$\frac{\sqrt{2}}{2}$,直線l:y=$\frac{1}{2}$(x-3)與橢圓C交于不同的兩點(diǎn)P,Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C的右焦點(diǎn)為F,求△PFQ的面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),A,B是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),P是橢圓上任意一點(diǎn),且直線PA、PB的斜率分別為k1、k2,若橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,則|k1•k2|=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

7.橢圓$\frac{x^2}{100}$+$\frac{y^2}{64}$=1的兩焦點(diǎn)為F1,F(xiàn)2,P是橢圓上一點(diǎn),滿足∠F1PF2=60°,則三角形F1PF2的面積$\frac{{64\sqrt{3}}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.橢圓$\frac{x^2}{36}$+$\frac{y^2}{16}$=1上一點(diǎn)M到一個(gè)焦點(diǎn)的距離是5,則它到另一個(gè)焦點(diǎn)的距離是7.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{4}{5}$,以其焦點(diǎn)為頂點(diǎn),左右頂點(diǎn)為焦點(diǎn)的雙曲線的漸近線方程為y=±$\frac{3}{4}$x.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,并且|F1F2|=6,動(dòng)點(diǎn)P在橢圓C上,△PF1F2的周長為16.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M滿足|$\overrightarrow{M{F}_{2}}$|=1且$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$=0,求|$\overrightarrow{PM}$|的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,橢圓C與x軸正半軸交于A點(diǎn),與y軸正半軸交于B(0,2),且$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,過點(diǎn)D(4,0)作直線l交橢圓于不同兩點(diǎn)P,Q,則直線l的斜率的取值范圍是( 。
A.-1<k<$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{2}}{2}$<k<1D.-1<k<1

查看答案和解析>>

同步練習(xí)冊(cè)答案