相關習題
 0  256545  256553  256559  256563  256569  256571  256575  256581  256583  256589  256595  256599  256601  256605  256611  256613  256619  256623  256625  256629  256631  256635  256637  256639  256640  256641  256643  256644  256645  256647  256649  256653  256655  256659  256661  256665  256671  256673  256679  256683  256685  256689  256695  256701  256703  256709  256713  256715  256721  256725  256731  256739  266669 

科目: 來源: 題型:

【題目】已知函數,其中為常數.

(1)若,求曲線在點處的切線方程;

(2)若,求零點的個數;

(3)若為整數,且當時, 恒成立,求的最大值.

(參考數據 ,

查看答案和解析>>

科目: 來源: 題型:

【題目】某廠今年擬舉行促銷活動,經調查測算,該廠產品的年銷售量(即該廠的年產量)x(萬件)與年促銷費m(萬元)(m≥0)滿足x=3-.已知今年生產的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).

(1)將今年該產品的利潤y萬元表示為年促銷費m(萬元)的函數;

(2)求今年該產品利潤的最大值,此時促銷費為多少萬元?

查看答案和解析>>

科目: 來源: 題型:

【題目】通過研究學生的學習行為,心理學家發(fā)現,學生接受能力依賴于老師引入概念和描述問題所用的時間,講座開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持理想的狀態(tài),隨后學生的注意力開始分散,分析結果和實驗表明,用表示學生掌握和接受概念的能力(的值越大,表示接受能力越強),表示提出和講授概念的時間(單位:分),可以有以下公式:

(1)開講多少分鐘后,學生的接受能力最強?能維持多少分鐘?

(2)開講5分鐘與開講20分鐘比較,學生的接受能力何時強一些?

(3)一個數學難題,需要55的接受能力以及13分鐘的時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講授完這個難題?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數f(x)=|2x-1|+|x-2a|.

(1)當a=1時,求f(x)≤3的解集;

(2)當x∈[1,2]時,f(x)≤3恒成立,求實數a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】我們知道:人們對聲音有不同的感覺,這與它的強度有關系.聲音的強度用瓦/2 ()表示,但在實際測量時,常用聲音的強度水平表示,它們滿足以下公式: (單位為分貝, ,其中,這是人們平均能聽到的最小強度,是聽覺的開端).回答以下問題:

(1)樹葉沙沙聲的強度是,耳語的強度是,恬靜的無線電廣播的強度是,試分別求出它們的強度水平;

(2)某一新建的安靜小區(qū)規(guī)定:小區(qū)內公共場所的聲音的強度水平必須保持在50分貝以下,試求聲音強度的范圍為多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的中心為原點,離心率,其中一個焦點的坐標為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)當點在橢圓上運動時,設動點的運動軌跡為若點滿足: 其中上的點.直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】(1) 為何值時, .①有且僅有一個零點;②有兩個零點且均比-1大;

(2)若函數有4個零點,求實數的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知垂直于以為直徑的圓所在平面,點在線段上,點為圓上一點,且

(Ⅰ) 求證:

(Ⅱ) 求二面角余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】6名男醫(yī)生,4名女醫(yī)生

(1)3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個不同地區(qū)去巡回醫(yī)療,共有多少種不同方法?

(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,則有多少種不同分法?若將這兩組醫(yī)生分派到兩地去,并且每組選出正副組長兩人,又有多少種不同方案?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義域為的函數是奇函數.

1)求的值;

(2)判斷函數的單調性,并用定義證明;

(3)當時, 恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案