科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)在上的最值;
(2)令,若時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)且時(shí),證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校高三一次月考之后,為了為解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生此次的數(shù)學(xué)成績,按成績分組,制成了下面頻率分布表:
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | 5 | 0.05 | |
第二組 | 35 | 0.35 | |
第三組 | 30 | 0.30 | |
第四組 | 20 | 0.20 | |
第五組 | 10 | 0.10 | |
合計(jì) | 100 | 1.00 |
(1)試估計(jì)該校高三學(xué)生本次月考的平均分;
(2)如果把表中的頻率近似地看作每個(gè)學(xué)生在這次考試中取得相應(yīng)成績的概率,那么從所有學(xué)生中采用逐個(gè)抽取的方法任意抽取3名學(xué)生的成績,并記成績落在中的學(xué)生數(shù)為,
求:①在三次抽取過程中至少有兩次連續(xù)抽中成績在中的概率;
②的分布列和數(shù)學(xué)期望.(注:本小題結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過拋物線上一點(diǎn)作拋物線的切線交軸于點(diǎn),交軸于點(diǎn),當(dāng)時(shí),.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點(diǎn)在拋物線上,且滿足,其中點(diǎn),若拋物線上存在異于的點(diǎn),使得經(jīng)過三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的左焦點(diǎn)為,其左、右頂點(diǎn)為、,橢圓與軸正半軸的交點(diǎn)為,的外接圓的圓心在直線上.
(I)求橢圓的方程;
(II)已知直線:,是橢圓上的動(dòng)點(diǎn),,垂足為,是否存在點(diǎn),使得為等腰三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調(diào)減函數(shù);q:關(guān)于x的方程x2-3ax+2a2+1=0的兩根均大于3,若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),函數(shù)與在處的切線互相垂直,求的值;
(2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;
(3)是否存在正實(shí)數(shù),使得對任意正實(shí)數(shù)恒成立?若存在,求出滿足條件的實(shí)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某出租車公司為了解本公司出租車司機(jī)對新法規(guī)的知曉情況,隨機(jī)對名出租車司機(jī)進(jìn)行調(diào)查,調(diào)查問卷共道題,答題情況如下表:
答對題目數(shù) | ||||
女 | ||||
男 |
(I)如果出租車司機(jī)答對題目大于等于,就認(rèn)為該司機(jī)對新法規(guī)的知曉情況比較好,試估計(jì)該公司的出租車司機(jī)對新法規(guī)知曉情況比較好的概率;
(II)從答對題目數(shù)小于的出租車司機(jī)中選出人做進(jìn)一步的調(diào)查,求選出的人中至少有一名女出租車司機(jī)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某車間20名工人年齡數(shù)據(jù)如下表:
年齡(歲) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合計(jì) |
工人數(shù)(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求這20名工人年齡的眾數(shù)與平均數(shù);
(2)以十位數(shù)為莖,個(gè)位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)從年齡在24和26的工人中隨機(jī)抽取2人,求這2人均是24歲的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)是實(shí)數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,在上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com