相關(guān)習(xí)題
 0  257325  257333  257339  257343  257349  257351  257355  257361  257363  257369  257375  257379  257381  257385  257391  257393  257399  257403  257405  257409  257411  257415  257417  257419  257420  257421  257423  257424  257425  257427  257429  257433  257435  257439  257441  257445  257451  257453  257459  257463  257465  257469  257475  257481  257483  257489  257493  257495  257501  257505  257511  257519  266669 

科目: 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面是邊長是1的正方形,側(cè)棱PA與底面成45°的角,M,N,分別是AB,PC的中點(diǎn);

(1)求證:MN∥平面PAD;
(2)求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)甲、乙、丙三個乒乓球協(xié)會的分別選派3,1,2名運(yùn)動員參加某次比賽,甲協(xié)會運(yùn)動員編號分別為A1 , A2 , A3 , 乙協(xié)會編號為A4 , 丙協(xié)會編號分別為A5 , A6 , 若從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會至少有一名運(yùn)動員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動員來自同一協(xié)會的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤總額最大?并求出利潤總額的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖是計(jì)算1+ + +…+ 的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填的是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,SADC= ,求AB的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知兩個無窮數(shù)列的前項(xiàng)和分別為, , , ,對任意的,都有

1)求數(shù)列的通項(xiàng)公式;

2)若 為等差數(shù)列,對任意的,都有證明:

3)若 為等比數(shù)列, , 求滿足 值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計(jì)如圖所示的圓心與矩形對角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(為上切點(diǎn)),與左右兩邊相交(, 為其中兩個交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域已知圓的半徑為1m,設(shè)透光區(qū)域的面積為

1關(guān)于的函數(shù)關(guān)系式,并求出定義域

2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好當(dāng)該比值最大時求邊的長度

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;

2)設(shè)函數(shù) 若函數(shù)的最小值是,的值;

3若函數(shù) 的定義域都是,對于函數(shù)的圖象上的任意一點(diǎn)在函數(shù)的圖象上都存在一點(diǎn),使得,其中是自然對數(shù)的底數(shù), 為坐標(biāo)原點(diǎn)的取值范圍

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a3=24,S11=0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn
(Ⅲ)當(dāng)n為何值時,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市有大型超市200家、中型超市400家、小型超市1400 家.為掌握各類超市的營業(yè)情況,現(xiàn)按分層抽樣方法抽取一個容量為100的樣本,應(yīng)抽取中型超市(
A.70家
B.50家
C.20家
D.10家

查看答案和解析>>

同步練習(xí)冊答案