相關(guān)習(xí)題
 0  257547  257555  257561  257565  257571  257573  257577  257583  257585  257591  257597  257601  257603  257607  257613  257615  257621  257625  257627  257631  257633  257637  257639  257641  257642  257643  257645  257646  257647  257649  257651  257655  257657  257661  257663  257667  257673  257675  257681  257685  257687  257691  257697  257703  257705  257711  257715  257717  257723  257727  257733  257741  266669 

科目: 來源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F(xiàn),G,H分別是BC,PB,PC,AD的中點(diǎn).
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過點(diǎn)F作平面α,使ED∥平面α,當(dāng)平面α⊥平面EDG時(shí),設(shè)PA與平面α交于點(diǎn)Q,求PQ的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,平面四邊形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四點(diǎn)F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求證:平面CBE⊥平面EDB;
(Ⅲ)當(dāng)x=2時(shí),求二面角F﹣EB﹣C的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn)。(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)

求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

證明:b>3a;

, 這兩個(gè)函數(shù)的所有極值之和不小于,求a的取值范圍。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知{an}是各項(xiàng)都為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn , 且S2=3,S4=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}是等差數(shù)列,且b3=a3 , b5=a5 , 試求數(shù)列{bn}的前n項(xiàng)和Mn

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長為 的正方形,PA⊥BD.

(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點(diǎn),EF⊥平面PCD,求直線PB與平面PCD所成角的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n ,n 2),這些球除顏色外全部相同,F(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,……,m+n的抽屜內(nèi),其中第k次取球放入編號(hào)為k的抽屜(k=1,2,3,……,m+n).

(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;

(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(x)是x的數(shù)學(xué)期望,證明

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量 =(4,3), =(2,﹣1),O為坐標(biāo)原點(diǎn),P是直線AB上一點(diǎn).
(1)若點(diǎn)P是線段AB的中點(diǎn),求向量 與向量 夾角θ的余弦值;
(2)若點(diǎn)P在線段AB的延長線上,且| |= | |,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案