相關(guān)習(xí)題
 0  259294  259302  259308  259312  259318  259320  259324  259330  259332  259338  259344  259348  259350  259354  259360  259362  259368  259372  259374  259378  259380  259384  259386  259388  259389  259390  259392  259393  259394  259396  259398  259402  259404  259408  259410  259414  259420  259422  259428  259432  259434  259438  259444  259450  259452  259458  259462  259464  259470  259474  259480  259488  266669 

科目: 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ),過原點作曲線的切線,求直線的方程;

(Ⅱ)個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , Sn=n2﹣4n﹣5

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn=|an|,數(shù)列{bn}的前n項和為Tn, Tn

查看答案和解析>>

科目: 來源: 題型:

【題目】某學(xué)校高一年級有學(xué)生名,高二年級有學(xué)生名.現(xiàn)用分層抽樣方法(按高一年級、高二年級分二層)從該校的學(xué)生中抽取名學(xué)生,調(diào)查他們的數(shù)學(xué)學(xué)習(xí)能力.

(Ⅰ)高一年級學(xué)生中和高二年級學(xué)生中各抽取多少學(xué)生?

(Ⅱ)通過一系列的測試,得到這名學(xué)生的數(shù)學(xué)能力值.分別如表一和表二

表一:

高一年級

人數(shù)

表二:

高二年級

人數(shù)

①確定,并在答題紙上完成頻率分布直方圖;

②分別估計該校高一年級學(xué)生和高二年級學(xué)生的數(shù)學(xué)能力值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

③根據(jù)已完成的頻率分布直方圖,指出該校高一年級學(xué)生和高二年級學(xué)生的數(shù)學(xué)能力值分布特點的不同之處(不用計算,通過觀察直方圖直接回答結(jié)論)

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙兩地相距500千米,一輛貨車從甲地行駛到乙地,規(guī)定速度不得超過100千米小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(千米時)的平方成正比,比例系數(shù)為0.01;固定部分為元().

(1)把全程運輸成本(元)表示為速度(千米時)的函數(shù),并指出這個函數(shù)的定義域;

(2)為了使全程運輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目: 來源: 題型:

【題目】拋物線x2=ay(a>0)的準線l與y軸交于點P,若l繞點P以每秒 弧度的角速度按逆時針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E、F分別為棱DD1和BC中點G為棱A1B1上任意一點,則直線AE與直線FG所成的角為(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,DBC的中點.

(1)求證:A1B∥平面ADC1;

(2)若ABAC,ABAC=1,AA1=2,求幾何體ABD-A1B1C1的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.(x)=|x+1|,g(x)=

查看答案和解析>>

科目: 來源: 題型:

【題目】如右圖所示,一座圓拱(圓的一部分)橋,當水面在圖位置m時,拱頂離水面2 m,水面寬 12 m,當水面下降1 m后,水面寬多少米?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的一個焦點與拋物線的焦點相同 為橢圓的左、右焦點 為橢圓上任意一點, 面積的最大值為1

(1)求橢圓的方程;

(2)直線交橢圓兩點.若直線的斜率分別為,.求證:直線過定點并求出該定點的坐標

查看答案和解析>>

同步練習(xí)冊答案