相關(guān)習(xí)題
 0  259674  259682  259688  259692  259698  259700  259704  259710  259712  259718  259724  259728  259730  259734  259740  259742  259748  259752  259754  259758  259760  259764  259766  259768  259769  259770  259772  259773  259774  259776  259778  259782  259784  259788  259790  259794  259800  259802  259808  259812  259814  259818  259824  259830  259832  259838  259842  259844  259850  259854  259860  259868  266669 

科目: 來源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)校總務(wù)辦公室用1000萬元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬元.

(1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),寫出的表達(dá)式;

(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?

【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬元

【解析】

由已知求出第層樓房每平方米建筑費(fèi)用為萬元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用;

設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.

解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元,

且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,

可得建筑第1層樓房每平方米建筑費(fèi)用為:萬元.

建筑第1層樓房建筑費(fèi)用為:萬元

樓房每升高一層,整層樓建筑費(fèi)用提高:萬元

建筑第x層樓時(shí),該樓房綜合費(fèi)用為:

;

設(shè)該樓房每平方米的平均綜合費(fèi)用為,

則:

當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立.

學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬元.

【點(diǎn)睛】

本題考查簡(jiǎn)單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

型】解答
結(jié)束】
20

【題目】已知

(1)求函數(shù)的最小正周期和對(duì)稱軸方程;

(2)若,求的值域.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為,,分別為橢圓的左頂點(diǎn)和下頂點(diǎn),為橢圓上位于第一象限內(nèi)的一點(diǎn),軸于點(diǎn),軸于點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若,求的值;

(3)求證:四邊形的面積為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,則稱集合M具有∟性,給出下列四個(gè)集合: ①M(fèi)={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為1,中點(diǎn),連接,則異面直線所成角的余弦值為_____

【答案】

【解析】

連接CD1,CM,由四邊形A1BCD1為平行四邊形得A1BCD1,即∠CD1M為異面直線A1BD1M所成角,再由已知求△CD1M的三邊長(zhǎng),由余弦定理求解即可.

如圖,

連接,由,可得四邊形為平行四邊形,

,∴為異面直線所成角,

由正方體的棱長(zhǎng)為1,中點(diǎn),

,

中,由余弦定理可得,

∴異面直線所成角的余弦值為

故答案為:

【點(diǎn)睛】

本題考查異面直線所成角的求法,異面直線所成的角常用方法有:將異面直線平移到同一平面中去,達(dá)到立體幾何平面化的目的;或者建立坐標(biāo)系,通過求直線的方向向量得到直線夾角或其補(bǔ)角.

型】填空
結(jié)束】
16

【題目】中,角所對(duì)的邊分別是,的中點(diǎn),,,面積的最大值為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,則_____

【答案】

【解析】

分子分母同時(shí)除以,把目標(biāo)式轉(zhuǎn)為的表達(dá)式,代入可求.

,則

故答案為:

【點(diǎn)睛】

本題考查三角函數(shù)的化簡(jiǎn)求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類型可進(jìn)行弦化切;(2)“1”的靈活代換的關(guān)系進(jìn)行變形、轉(zhuǎn)化.

型】填空
結(jié)束】
15

【題目】如圖,正方體的棱長(zhǎng)為1,中點(diǎn),連接,則異面直線所成角的余弦值為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點(diǎn)A(1,2),過點(diǎn)P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點(diǎn),則△ABC是(
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定

查看答案和解析>>

科目: 來源: 題型:

【題目】交通管理部門為了解機(jī)動(dòng)車駕駛員(簡(jiǎn)稱駕駛員)對(duì)某新法規(guī)的知曉情況,對(duì)甲、乙、丙、丁四個(gè)社區(qū)做分層抽樣調(diào)查.假設(shè)四個(gè)社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個(gè)社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個(gè)社區(qū)駕駛員的總?cè)藬?shù)N為(
A.101
B.808
C.1212
D.2012

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的分別為a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面積為 ,求△ABC的周長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:

【題目】在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2 . 該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為

ξ

0

2

3

4

5

P

0.03

P1

P2

P3

P4


(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上確定一點(diǎn)E,使得PB∥平面ACE,并求 的值;
(2)在(1)條件下,求平面PAB與平面ACE所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案