相關(guān)習(xí)題
 0  259676  259684  259690  259694  259700  259702  259706  259712  259714  259720  259726  259730  259732  259736  259742  259744  259750  259754  259756  259760  259762  259766  259768  259770  259771  259772  259774  259775  259776  259778  259780  259784  259786  259790  259792  259796  259802  259804  259810  259814  259816  259820  259826  259832  259834  259840  259844  259846  259852  259856  259862  259870  266669 

科目: 來源: 題型:

【題目】已知曲線C: =1(y≥0),直線l:y=kx+1與曲線C交于A,D兩點,A,D兩點在x軸上的射影分別為點B,C.記△OAD的面積S1 , 四邊形ABCD的面積為S2 . (Ⅰ)當(dāng)點B坐標為(﹣1,0)時,求k的值;
(Ⅱ)若S1= ,求線段AD的長;
(Ⅲ)求 的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】德國數(shù)學(xué)家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘31(即3n+1),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)n(首項)按照上述規(guī)則施行變換后的第8項為1(注:l可以多次出現(xiàn)),則n的所有不同值的個數(shù)為

A. 4 B. 6 C. 8 D. 32

查看答案和解析>>

科目: 來源: 題型:

【題目】某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費與其上年度的出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

保費

設(shè)該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率如下:

一年內(nèi)出險次數(shù)

0

1

2

3

4

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一續(xù)保人本年度的保費高于基本保費的概率;

(Ⅱ)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出的概率;

(Ⅲ)求續(xù)保人本年度的平均保費與基本保費的比值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x2+ax+a). (I)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求三棱錐P﹣BCE的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ ,現(xiàn)有一組數(shù)據(jù),繪制得到莖葉圖,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)求a的值;
(Ⅱ)現(xiàn)從莖葉圖小于3的數(shù)據(jù)中任取2個數(shù)據(jù)分別替換m的值,求恰有1個數(shù)據(jù)使得函數(shù)f(x)沒有零點的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,圓形紙片的圓心為,半徑為1,該紙片上的等邊三角形的中心為.、、為圓上的點,,分別是以,為底邊的等腰三角形.沿虛線剪開后,分別以,,為折痕折起,,使得、、重合,得到三棱錐.當(dāng)的邊長變化時,所得三棱錐體積的最大值為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】定義“規(guī)范01數(shù)列”如下:共有項,其中項為0,項為1,且對任意,,,…,中0的個數(shù)不少于1的個數(shù).若,則不同的“規(guī)范01數(shù)列”共有( )

A. 14個 B. 13個 C. 15個 D. 12個

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點的縱坐標伸長到原來的2倍橫坐標不變,再將所得到的圖像向右平移個單位長度.

求函數(shù)的解析式,并求其圖像的對稱軸方程;

已知關(guān)于的方程內(nèi)有兩個不同的解

1求實數(shù)m的取值范圍;

2證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等比數(shù)列的前項和為,公比,,

(1)求等比數(shù)列的通項公式;

(2)設(shè),求的前項和

【答案】(1)(2)

【解析】

1)將已知兩式作差,利用等比數(shù)列的通項公式,可得公比,由等比數(shù)列的求和可得首項,進而得到所求通項公式;(2)求得bnn,,由裂項相消求和可得答案.

(1)等比數(shù)列的前項和為,公比①,

②.

②﹣①,得,則,

,所以,

因為,所以,

所以,

所以;

(2),

所以前項和

【點睛】

裂項相消法適用于形如(其中是各項均不為零的等差數(shù)列,c為常數(shù))的數(shù)列. 裂項相消法求和,常見的有相鄰兩項的裂項求和,還有一類隔一項的裂項求和,如.

型】解答
結(jié)束】
22

【題目】已知函數(shù)的圖象上有兩點.函數(shù)滿足,且

(1)求證:;

(2)求證:;

(3)能否保證中至少有一個為正數(shù)?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案