科目: 來源: 題型:
【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個焦點,P(1, )是橢圓上一點,且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l過點F2 , 且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 =﹣ 恒成立?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知命題a2x2+ax﹣2=0在[﹣1,1]上有解;命題q:只有一個實數(shù)x滿足不等式x2+2ax+2a≤0,若命題“p”或“q”是假命題,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù)f(x),滿足f(mn)=f(m)+f(n)(m,n>0),且當(dāng)x>1時,有f(x)>0.
①求證:f( )=f(m)﹣f(n);
②求證:f(x)在(0,+∞)上是增函數(shù);
③比較f( )與 的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系內(nèi),點實施變換后,對應(yīng)點為,給出以下命題:
①圓上任意一點實施變換后,對應(yīng)點的軌跡仍是圓;
②若直線上每一點實施變換后,對應(yīng)點的軌跡方程仍是則;
③橢圓上每一點實施變換后,對應(yīng)點的軌跡仍是離心率不變的橢圓;
④曲線上每一點實施變換后,對應(yīng)點的軌跡是曲線,是曲線上的任意一點,是曲線上的任意一點,則的最小值為.
以上正確命題的序號是___________________(寫出全部正確命題的序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
平面直角坐標(biāo)系xOy中,曲線C:.直線l經(jīng)過點P(m,0),且傾斜角為.O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)的定義域為A,若時總有為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:
①函數(shù)=(xR)是單函數(shù);②若為單函數(shù),且則;③若f:AB為單函數(shù),則對于任意bB,它至多有一個原象;
④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).其中的真命題是 .(寫出所有真命題的編號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com