科目: 來源: 題型:
【題目】已知函數(shù)f(x)=xetx﹣ex+1,其中t∈R,e是自然對數(shù)的底數(shù).
(1)若方程f(x)=1無實數(shù)根,求實數(shù)t的取值范圍;
(2)若函數(shù)f(x)在(0,+∞)內為減函數(shù),求實數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓O:x2+y2=4,點F( ,0),以線段MF為直徑的圓內切于圓O,記點M的軌跡為C
(1)求曲線C的方程;
(2)若過F的直線l與曲線C交于A,B兩點,問:在x軸上是否存在點N,使得 為定值?若存在,求出點N坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1中,側面ABB1A1為正方形,延長AB到D,使得AD=BD,平面AA1C1C⊥平面ABB1A1 , A1C1= AA1 , ∠C1A1A= .
(1)若E,F(xiàn)分別為C1B1 , AC的中點,求證:EF∥平面ABB1A1;
(2)求平面A1B1C1與平面CB1D所成的銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為調查高中生選修課的選修傾向與性別關系,隨機抽取50名學生,得到如表的數(shù)據表:
傾向“平面幾何選講” | 傾向“坐標系與參數(shù)方程” | 傾向“不等式選講” | 合計 | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合計 | 20 | 12 | 18 | 50 |
(1)根據表中提供的數(shù)據,選擇可直觀判斷“選課傾向與性別有關系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關系的把握大;
附:K2= .
P(k2≤k0) | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)在抽取的50名學生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標系與參數(shù)方程”的學生中抽取8人進行問卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數(shù)減去與傾向“坐標系與參數(shù)方程”的人數(shù)的差為ξ,求ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設,數(shù)列的前項和為,求使的的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)的定義域是{x|x≠0},對定義域內的任意,都有f(·)=f()+f(),且當x>1時,f(x)>0,f(2)=1.
(1)證明:(x)是偶函數(shù);
(2)證明:(x)在(0,+∞)上是增函數(shù);
(3)解不等式(2-1)<2.
查看答案和解析>>
科目: 來源: 題型:
【題目】某城市理論預測2010年到2014年人口總數(shù)與年份的關系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請根據上表提供的數(shù)據,求出y關于x的線性回歸方程;
(2) 據此估計2015年該城市人口總數(shù)。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,DOAB是邊長為2的正三角形,當一條垂直于底邊OA(垂足不與O,A重合)的直線x=t從左至右移動時,直線l把三角形分成兩部分,記直線l左邊部分的面積y.
(Ⅰ)寫出函數(shù)y= f(t)的解析式;
(Ⅱ)寫出函數(shù)y= f(t)的定義域和值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】電視傳媒公司為了解世界杯期間某地區(qū)電視觀眾對《戰(zhàn)斗吧足球》節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾日均收看該節(jié)目時間的頻率分布直方圖:
(注:頻率分布直方圖中縱軸表示,例如,收看時間在分鐘的頻率是)
將日均收看該足球節(jié)目時間不低于40分鐘的觀眾稱為“足球迷”.
(1)根據已知條件完成下面的列聯(lián)表,并據此資料判斷是否可以認為“足球迷”與性別有關?如果有關,有多大把握?
非足球迷 | 足球迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“足球迷”人數(shù)為.若每次抽取的結果是相互獨立的,求的分布列、均值和方差.
附:,
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com