科目: 來源: 題型:
【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題中,假命題為( )
A. 存在四邊相等的四邊形不是正方形
B. z1,z2∈C,z1+z2為實數(shù)的充分必要條件是z1,z2互為共軛復數(shù)
C. 若x,y∈R,且x+y>2,則x,y至少有一個大于1
D. 對于任意n∈N+,都是偶數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】以平面直角坐標系原點O為極點,以x軸非負半軸為極軸,以平面直角坐標系的長度單位為長度單位建立極坐標系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標方程;
(Ⅱ) 設直線l與曲線C相交于A,B兩點,求|AB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,DE是⊙O的直徑,過⊙O上的點C作直線AB,交ED的延長線于點B,且OA=OB,CA=CB,連結(jié)EC,CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED= ,⊙O的半徑為3,求OA的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,.
(1)設.①若,則,滿足什么條件時,曲線與在x=0處總有相同的切線?②當a=1時,求函數(shù)單調(diào)區(qū)間;
(2)若集合為空集,求ab的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OA,OB是兩條互相垂直的筆直公路,半徑OA=2km的扇形AOB是某地的一名勝古跡區(qū)域.當?shù)卣疄榱司徑庠摴袍E周圍的交通壓力,欲在圓弧AB上新增一個入口P(點P不與A,B重合),并新建兩條都與圓弧AB相切的筆直公路MB,MN,切點分別是B,P.當新建的兩條公路總長最小時,投資費用最低.設∠POA=,公路MB,MN的總長為.
(1)求關于的函數(shù)關系式,并寫出函數(shù)的定義域;
(2)當為何值時,投資費用最低?并求出的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分) 命題實數(shù)x滿足(其中),命題實數(shù)滿足
(Ⅰ)若,且為真,求實數(shù)的取值范圍;
(Ⅱ)若是 的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的長軸與短軸之和為6,橢圓上任一點到兩焦點, 的距離之和為4.
(1)求橢圓的標準方程;
(2)若直線: 與橢圓交于, 兩點, , 在橢圓上,且, 兩點關于直線對稱,問:是否存在實數(shù),使,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C1: =1(a>b>0)的離心率為e= ,且過點(1, ).拋物線C2:x2=﹣2py(p>0)的焦點坐標為(0,﹣ ).
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)若點M是直線l:2x﹣4y+3=0上的動點,過點M作拋物線C2的兩條切線,切點分別為A,B,直線AB交橢圓C1于P,Q兩點.
(i)求證直線AB過定點,并求出該定點坐標;
(ii)當△OPQ的面積取最大值時,求直線AB的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com