相關(guān)習(xí)題
 0  260946  260954  260960  260964  260970  260972  260976  260982  260984  260990  260996  261000  261002  261006  261012  261014  261020  261024  261026  261030  261032  261036  261038  261040  261041  261042  261044  261045  261046  261048  261050  261054  261056  261060  261062  261066  261072  261074  261080  261084  261086  261090  261096  261102  261104  261110  261114  261116  261122  261126  261132  261140  266669 

科目: 來(lái)源: 題型:

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

【答案】I;(II

【解析】試題分析:(1)根據(jù)題意可得, 故斜率為由直線與直線垂直,可得,因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

代入直線得連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè), , ,∴ ,得,將點(diǎn)坐標(biāo)代入橢圓方程得,

點(diǎn)到直線的距離為,利用弦長(zhǎng)公式得EF,則平行四邊形的面積為

.

解析:(1)由題意知,橢圓的左頂點(diǎn),上頂點(diǎn),直線的斜率,

,

因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

由點(diǎn)在直線上,∴,且

解得, ,

∴橢圓的方程為.

(2)設(shè), , ,

代入消去并整理得

, ,

∵四邊形為平行四邊形,∴ ,

,將點(diǎn)坐標(biāo)代入橢圓方程得,

點(diǎn)到直線的距離為 ,

∴平行四邊形的面積為

.

故平行四邊形的面積為定值.

型】解答
結(jié)束】
21

【題目】已知函數(shù) .

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),求證:函數(shù)有兩個(gè)不相等的零點(diǎn), ,且.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),求證:函數(shù)有兩個(gè)不相等的零點(diǎn) ,且.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】試題分析:(1)討論函數(shù)單調(diào)區(qū)間即解導(dǎo)數(shù)大于零求得增區(qū)間,導(dǎo)數(shù)小于零求得減區(qū)間(2)函數(shù)有兩個(gè)不同的零點(diǎn),先分析函數(shù)單調(diào)性得零點(diǎn)所在的區(qū)間, 上單調(diào)遞增,在上單調(diào)遞減.∵, , ,∴函數(shù)有兩個(gè)不同的零點(diǎn),且一個(gè)在內(nèi),另一個(gè)在內(nèi).

不妨設(shè) ,要證,即證, 上是增函數(shù),故,且,即證. 由,得

, ,得上單調(diào)遞減,∴,且∴, ,∴,即∴,故得證

解析:(1)當(dāng)時(shí), ,得

,得.

當(dāng)時(shí), , ,所以,故上單調(diào)遞減;

當(dāng)時(shí), , ,所以,故上單調(diào)遞增;

當(dāng)時(shí), , ,所以,故上單調(diào)遞減;

所以, 上單調(diào)遞減,在上單調(diào)遞增.

(2)證明:由題意得,其中,

,由,

所以上單調(diào)遞增,在上單調(diào)遞減.

, ,

∴函數(shù)有兩個(gè)不同的零點(diǎn),且一個(gè)在內(nèi),另一個(gè)在內(nèi).

不妨設(shè), ,

要證,即證

因?yàn)?/span>,且上是增函數(shù),

所以,且,即證.

,得 ,

,

.

,∴, ,

時(shí), ,即上單調(diào)遞減,

,且∴, ,

,即∴,故得證.

型】解答
結(jié)束】
22

【題目】已知曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)直線的極坐標(biāo)方程為.

(1)求曲線和直線的普通方程;

(2)設(shè)為曲線上任意一點(diǎn),求點(diǎn)到直線的距離的最值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)直線的極坐標(biāo)方程為.

(1)求曲線和直線的普通方程;

(2)設(shè)為曲線上任意一點(diǎn),求點(diǎn)到直線的距離的最值.

【答案】(1), ;(2)最大值為,最小值為

【解析】試題分析:(1)根據(jù)參數(shù)方程和極坐標(biāo)化普通方程化法即易得結(jié)論的普通方程為;直線的普通方程為.(2)求點(diǎn)到線距離問(wèn)題可借助參數(shù)方程,利用三角函數(shù)最值法求解即可故設(shè), .即可得出最值

解析:(1)根據(jù)題意,由,得, ,

,得,

的普通方程為;

,

故直線的普通方程為.

(2)由于為曲線上任意一點(diǎn),設(shè)

由點(diǎn)到直線的距離公式得,點(diǎn)到直線的距離為

.

,

,即 ,

故點(diǎn)到直線的距離的最大值為,最小值為.

點(diǎn)睛:首先要熟悉參數(shù)方程和極坐標(biāo)方程化普通方程的方法,第一問(wèn)基本屬于送分題所以務(wù)必抓住,對(duì)于第二問(wèn)可以總結(jié)為一類題型,借助參數(shù)方程設(shè)點(diǎn)的方便轉(zhuǎn)化為三角函數(shù)最值問(wèn)題求解

型】解答
結(jié)束】
23

【題目】已知函數(shù),.

(1)解關(guān)于的不等式

(2)若函數(shù)的圖象恒在函數(shù)圖象的上方,求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________

【答案】

【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時(shí),則平行AC直線即可故a=-2,當(dāng)a>0時(shí),則直線平行AB即可,故a=1

點(diǎn)睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個(gè)數(shù)為無(wú)數(shù)個(gè)時(shí)的條件是什么,然后根據(jù)幾何關(guān)系求解即可

型】填空
結(jié)束】
16

【題目】《數(shù)書(shū)九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開(kāi)平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , 分別表示三角形的面積,大斜,中斜,小斜; , 分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則 .若在 , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知圓 與拋物線 相交于, 兩點(diǎn),分別以點(diǎn), 為切點(diǎn)作圓的切線.若切線恰好都經(jīng)過(guò)拋物線的焦點(diǎn),則( )

A. B. C. D.

【答案】A

【解析】由題得設(shè)A, ,聯(lián)立圓E和拋物線得: ,代入點(diǎn)A,AF為圓的切線,故,由拋物線得定義可知:AF=,故化簡(jiǎn)得: ,將點(diǎn)A代入圓得: ,而=,故故選A

點(diǎn)睛:此題幾何關(guān)系較為復(fù)雜,我們根據(jù)問(wèn)題可知借此題關(guān)鍵為找到pr的關(guān)系,我們可根據(jù)圓和拋物線相交結(jié)合拋物線的焦點(diǎn)弦長(zhǎng)結(jié)論綜合計(jì)算可得其關(guān)系,從而求解

型】單選題
結(jié)束】
12

【題目】已知函數(shù)在點(diǎn) 處的切線為,若直線軸上的截距恒小于,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點(diǎn).

(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)把直線軸的交點(diǎn)記為,求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,離心率, 為坐標(biāo)原點(diǎn),圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知四邊形內(nèi)接于橢圓.記直線的斜率分別為,試問(wèn)是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】為了適當(dāng)疏導(dǎo)電價(jià)矛盾,保障電力供應(yīng),支持可再生能源發(fā)展,促進(jìn)節(jié)能減排,安徽省于2012年推出了省內(nèi)居民階梯電價(jià)的計(jì)算標(biāo)準(zhǔn):以一個(gè)年度為計(jì)費(fèi)周期、月度滾動(dòng)使用,第一階梯電量:年用電量2160度以下(含2160度),執(zhí)行第一檔電價(jià)0.5653元/度;第二階梯電量:年用電量2161至4200度(含4200度),執(zhí)行第二檔電價(jià)0.6153元/度;第三階梯電量:年用電量4200度以上,執(zhí)行第三檔電價(jià)0.8653元/度.

某市的電力部門從本市的用電戶中隨機(jī)抽取10戶,統(tǒng)計(jì)其同一年度的用電情況,列表如下表:

用戶編號(hào)

1

2

3

4

5

6

7

8

9

10

年用電量(度)

1000

1260

1400

1824

2180

2423

2815

3325

4411

4600

(Ⅰ)試計(jì)算表中編號(hào)為10的用電戶本年度應(yīng)交電費(fèi)多少元?

(Ⅱ)現(xiàn)要在這10戶家庭中任意選取4戶,對(duì)其用電情況作進(jìn)一步分析,求取到第二階梯電量的戶數(shù)的分布列與期望;

(Ⅲ)以表中抽到的10戶作為樣本估計(jì)全市的居民用電情況,現(xiàn)從全市居民用電戶中隨機(jī)地抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面為菱形, , 為棱的中點(diǎn),且.

(Ⅰ)求證:平面平面;

(Ⅱ)當(dāng)直線與底面角時(shí),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案