相關習題
 0  261152  261160  261166  261170  261176  261178  261182  261188  261190  261196  261202  261206  261208  261212  261218  261220  261226  261230  261232  261236  261238  261242  261244  261246  261247  261248  261250  261251  261252  261254  261256  261260  261262  261266  261268  261272  261278  261280  261286  261290  261292  261296  261302  261308  261310  261316  261320  261322  261328  261332  261338  261346  266669 

科目: 來源: 題型:

【題目】設平面平面, , , ,

(1)證明: 平面;

(2) 求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在甲地,隨著人們生活水平的不斷提高,進入電影院看電影逐漸成為老百姓的一種娛樂方式.我們把習慣進入電影院看電影的人簡稱為“有習慣”的人,否則稱為“無習慣的人”.某電影院在甲地隨機調查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習慣”的人數(shù)如下表:

(1)以年齡45歲為分界點,請根據(jù)100個樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認為“有習慣”的人與年齡有關;

(2)已知甲地從15歲到75歲的市民大約有11萬人,以頻率估計概率,若每張電影票定價為,則在“有習慣”的人中約有的人會買票看電影(為常數(shù)).已知票價定為30元的某電影,票房達到了 69.3萬元.某新影片要上映,電影院若將電影票定價為25元,那么該影片票房估計能達到多少萬元?

參考公式:,其中.

參考臨界值

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓過點,且離心率為

1)求橢圓的方程;

2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為 ,過點的直線的參數(shù)方程為為參數(shù)),交于兩點

(1) 求的直角坐標方程和的普通方程;

(2) 若,,成等比數(shù)列,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)曲線在點處的切線方程為

(1) 求的值;

(2) 證明: .

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)有兩個不同零點.設函數(shù)的定義域為,且的最大值記為,最小值記為

1)求(用表示);

2)當時,試問以為長度的線段能否構成一個三角形,如果不一定,進一步求出的取值范圍,使它們能構成一個三角形;

3)求

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的焦點坐標分別為,,為橢圓上一點,滿足

(1) 求橢圓的標準方程:

(2) 設直線與橢圓交于兩點,點,若,的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個樣本,且將纖維長度超過315的棉花定為一級棉花.設計了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對甲、乙兩種棉花的纖維長度作比較,寫出兩個統(tǒng)計結論(不必計算);

(2)從樣本中隨機抽取甲、乙兩種棉花各2根,求其中恰有3根一級棉花的概率;

(3)用樣本估計總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機抽取1根,求其中一級棉花根數(shù)X的分布列及數(shù)學期望

查看答案和解析>>

科目: 來源: 題型:

【題目】業(yè)界稱中國芯迎來發(fā)展和投資元年,某芯片企業(yè)準備研發(fā)一款產品,研發(fā)啟動時投入資金為(為常數(shù))元,之后每年會投入一筆研發(fā)資金,年后總投入資金記為,經計算發(fā)現(xiàn)當時,近似地滿足,其中為常數(shù),.已知年后總投入資金為研發(fā)啟動時投入資金的倍.問

1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的倍;

2)研發(fā)啟動后第幾年的投入資金的最多.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在正方形中,的中點,點在線段上,且.若將, 分別沿折起,使兩點重合于點,如圖2.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值

查看答案和解析>>

同步練習冊答案