相關(guān)習(xí)題
 0  261235  261243  261249  261253  261259  261261  261265  261271  261273  261279  261285  261289  261291  261295  261301  261303  261309  261313  261315  261319  261321  261325  261327  261329  261330  261331  261333  261334  261335  261337  261339  261343  261345  261349  261351  261355  261361  261363  261369  261373  261375  261379  261385  261391  261393  261399  261403  261405  261411  261415  261421  261429  266669 

科目: 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)=xex

1)求函數(shù)fx)的極值.

2)若fx)﹣lnxmx1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在多面體中,已知四邊形為平行四邊形,平面平面,的中點,,.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目: 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:

【題目】綠水青山就是金山銀山,為了保護(hù)環(huán)境,減少空氣污染,某空氣凈化器制造廠,決定投入生產(chǎn)某種惠民型的空氣凈化器.根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到年生產(chǎn)銷售的統(tǒng)計規(guī)律如下:①年固定生產(chǎn)成本為2萬元;②每生產(chǎn)該型號空氣凈化器1百臺,成本增加1萬元;③年生產(chǎn)x百臺的銷售收入(萬元).假定生產(chǎn)的該型號空氣凈化器都能賣出(利潤=銷售收入﹣生產(chǎn)成本).

1)為使該產(chǎn)品的生產(chǎn)不虧本,年產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?

2)該產(chǎn)品生產(chǎn)多少臺時,可使年利潤最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200.在機(jī)器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機(jī)器在購買易損零件上所需的費用(單位:元), 表示購機(jī)的同時購買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機(jī)器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買19個還是20個易損零件?

查看答案和解析>>

科目: 來源: 題型:

【題目】給出下列四個命題:

①回歸直線過樣本點中心(

②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,平均值不變

③將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變

④在回歸方程4x+4中,變量x每增加一個單位時,y平均增加4個單位

其中錯誤命題的序號是(  )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的定義域為;

1)求實數(shù)的取值范圍;

2)設(shè)實數(shù)的最大值,若實數(shù),,滿足,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2018年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮.某大學(xué)社團(tuán)調(diào)查了該校文學(xué)院300名學(xué)生每天誦讀詩詞的時間(所有學(xué)生誦讀時間都在兩小時內(nèi)),并按時間(單位:分鐘)將學(xué)生分成六個組:,,,,經(jīng)統(tǒng)計得到了如圖所

示的頻率分布直方圖

(Ⅰ)求頻率分布直方圖中的值,并估計該校文學(xué)院的學(xué)生每天誦讀詩詞的時間的平均數(shù);

(Ⅱ)若兩個同學(xué)誦讀詩詞的時間滿足,則這兩個同學(xué)組成一個“Team”,已知從每天誦讀時間小于20分鐘和大于或等于80分鐘的所有學(xué)生中用分層抽樣的方法抽取了5人,現(xiàn)從這5人中隨機(jī)選取2人,求選取的兩人能組成一個“Team”的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)在曲線上取兩點,與原點構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案