科目: 來(lái)源: 題型:
【題目】直線l與兩直線y=1和x-y-7=0分別交于A,B兩點(diǎn),若線段AB的中點(diǎn)為M(1,-1),則直線l的斜率為( )
A. B. C. D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】平面中兩條直線l和n相交于O,對(duì)于平面上任意一點(diǎn)M,若p,q分別是M到直線l和n的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.則下列說(shuō)法正確的( )
A.若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有一個(gè)
B.若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè)
C.若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè)
D.若p=q,則點(diǎn)M的軌跡是一條過(guò)O點(diǎn)的直線
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于,),點(diǎn)在線段上,且滿足.已知,,設(shè).
(1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;
(2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】四棱錐中,底面是邊長(zhǎng)為的菱形,側(cè)面底面,60°, , 是中點(diǎn),點(diǎn)在側(cè)棱上.
(Ⅰ)求證: ;
(Ⅱ)是否存在,使平面 平面?若存在,求出,若不存在,說(shuō)明理由.
(Ⅲ)是否存在,使平面?若存在,求出.若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】春節(jié)期間,由于高速公路繼續(xù)實(shí)行小型車免費(fèi),因此高速公路上車輛較多,某調(diào)查公司在某城市從七座以下小型汽車中按進(jìn)入服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖的頻率分布直方圖.
(Ⅰ)此調(diào)查公司在采樣中,用到的是什么抽樣方法?
(Ⅱ)求這40輛小型車輛車速的眾數(shù)、中位數(shù)以及平均數(shù)的估計(jì)值;
(Ⅲ)若從車速在[60,70)的車輛中任抽取2輛,求至少有一輛車的車速在[65,70)的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).下列命題:( )
①函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱; ②函數(shù)是周期函數(shù);
③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒(méi)有公共點(diǎn),其中正確命題的序號(hào)是
(A)①③ (B)②③ (C)①④ (D)②④
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知:①函數(shù);
②向量,,且ω>0,;
③函數(shù)的圖象經(jīng)過(guò)點(diǎn)
請(qǐng)?jiān)谏鲜鋈齻(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,并解答.
已知 ,且函數(shù)f(x)的圖象相鄰兩條對(duì)稱軸之間的距離為.
(1)若,且,求f(θ)的值;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過(guò)的直線與橢圓交于兩點(diǎn),且的周長(zhǎng)為8.
(1)求橢圓的方程;
(2)直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知直角的三邊長(zhǎng),滿足.
(Ⅰ)在之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求斜邊的最小值;
(Ⅱ)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(Ⅲ)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形,且是正整數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線經(jīng)過(guò)點(diǎn),求a的值;
(2)若在內(nèi)存在極值,求a的取值范圍;
(3)當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com