相關(guān)習(xí)題
 0  262236  262244  262250  262254  262260  262262  262266  262272  262274  262280  262286  262290  262292  262296  262302  262304  262310  262314  262316  262320  262322  262326  262328  262330  262331  262332  262334  262335  262336  262338  262340  262344  262346  262350  262352  262356  262362  262364  262370  262374  262376  262380  262386  262392  262394  262400  262404  262406  262412  262416  262422  262430  266669 

科目: 來(lái)源: 題型:

【題目】已知函數(shù),

Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

Ⅱ.當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

Ⅲ.將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱(chēng),求的最小值。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>, , 當(dāng)時(shí),, 則函數(shù)在區(qū)間上的所有零點(diǎn)的和為( )

A. B. C. D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】下列命題正確的個(gè)數(shù)是( )

①命題已知,,則的充分不必要條件;

②“函數(shù)的最小正周期為”是“”的必要不充分條件;

上恒成立上恒成立;

④“平面向量的夾角是鈍角”的充要條件是“

⑤命題函數(shù)的值域?yàn)?/span>,命題函數(shù)是減函數(shù).若為真命題,為假命題,則實(shí)數(shù)的取值范圍是.

A.1B.2C.3D.4

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在本節(jié),我們介紹了命題的否定的概念,知道一個(gè)命題的否定仍是一個(gè)命題,它和原先的命題只能一真一假,不能同真或同假.在數(shù)學(xué)中,有很多“若p,則q”形式的命題,有的是真命題,有的是假命題,例如:

①若,則;(假命題)

②若四邊形為等腰梯形,則這個(gè)四邊形的對(duì)角線相等.(真命題)

這里,命題①②都是省略了量詞的全稱(chēng)量詞命題.

(1)有人認(rèn)為,①的否定是“若,則”,②的否定是“若四邊形為等腰梯形,則這個(gè)四邊形的對(duì)角線不相等”.你認(rèn)為對(duì)嗎?如果不對(duì),請(qǐng)你正確地寫(xiě)出命題①②的否定.

(2)請(qǐng)你列舉幾個(gè)“若p,則q”形式的省略了量詞的全稱(chēng)量詞命題,分別寫(xiě)出它們的否定,并判斷真假.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的參數(shù)方程化為普通方程;

(Ⅱ)求曲線上的點(diǎn)到曲線的距離的最大值和最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在三棱柱中,、分別是、的中點(diǎn).

(1)設(shè)棱的中點(diǎn)為,證明:平面;

(2)若,,,且平面平面.

(i)求三棱柱的體積;

(ii)求二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知命題函數(shù)內(nèi)恰有一個(gè)零點(diǎn);命題函數(shù)上是減函數(shù),若為真命題,則實(shí)數(shù)的取值范圍是___________

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】 如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù), ).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)上,點(diǎn)上(異于極點(diǎn)),若四點(diǎn)依次在同一條直線上,且成等比數(shù)列,求 的極坐標(biāo)方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】判斷下列命題的真假,并寫(xiě)出這些命題的否定:

(1)平面直角坐標(biāo)系下每條直線都與x軸相交;

(2)每個(gè)二次函數(shù)的圖象都是軸對(duì)稱(chēng)圖形;

(3)存在一個(gè)三角形,它的內(nèi)角和小于180°;

(4)存在一個(gè)四邊形,它的四個(gè)頂點(diǎn)不在同一個(gè)圓上.

查看答案和解析>>

同步練習(xí)冊(cè)答案