科目: 來源: 題型:
【題目】如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上任意一點,AN⊥PM,垂足為N , AE⊥PB,垂足為E .
(1)求證:平面PAM⊥平面PBM.
(2)求證:是二面角A-PB-M的平面角.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)已知矩形的面積為100,則這個矩形的長、寬各為多少時,矩形的周長最短?最短周長是多少?
(2)已知矩形的周長為36,則這個矩形的長、寬各為多少時,它的面積最大?最大面積是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權利,培養(yǎng)全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設.某高校為了解條例發(fā)布以來全校學生的閱讀情況,隨機調(diào)查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.
(1)求這200名學生每周閱讀時間的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值代表);
(2)由直方圖可以認為,目前該校學生每周的閱讀時間服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)一般正態(tài)分布的概率都可以轉(zhuǎn)化為標準正態(tài)分布的概率進行計算:若,令,則,且.利用直方圖得到的正態(tài)分布,求.
(ii)從該高校的學生中隨機抽取20名,記表示這20名學生中每周閱讀時間超過10小時的人數(shù),求(結(jié)果精確到0.0001)以及的數(shù)學期望.
參考數(shù)據(jù):,.若,則.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2016·鄭州模擬)某市公安局為加強安保工作,特舉行安保項目的選拔比賽活動,其中A、B兩個代表隊進行對抗賽,每隊三名隊員,A隊隊員是A1、A2、A3,B隊隊員是B1、B2、B3,按以往多次比賽的統(tǒng)計,對陣隊員之間勝負概率如下表,現(xiàn)按表中對陣方式進行三場比賽,每場勝隊得1分,負隊得0分,設A隊、B隊最后所得總分分別為ξ,η,且ξ+η=3.
對陣隊員 | A隊隊員勝 | A隊隊員負 |
A1對B1 |
| |
A2對B2 | ||
A3對B3 |
(1)求A隊最后所得總分為1的概率;
(2)求ξ的分布列,并用統(tǒng)計學的知識說明哪個隊實力較強.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)圖象上不同兩點,處切線的斜率分別是,規(guī)定(為線段的長度)叫做曲線在點與之間的“平方彎曲度”,給出以下命題:
①函數(shù)圖象上兩點與的橫坐標分別為1和2,則;
②存在這樣的函數(shù),圖象上任意兩點之間的“平方彎曲度”為常數(shù);
③設點,是拋物線上不同的兩點,則;
④設曲線(是自然對數(shù)的底數(shù))上不同兩點,,且,則的最大值為.
其中真命題的序號為__________(將所有真命題的序號都填上)
查看答案和解析>>
科目: 來源: 題型:
【題目】某校高一2班學生每周用于數(shù)學學習的時間(單位:)與數(shù)學成績(單位:分)之間有如下數(shù)據(jù):
24 | 15 | 23 | 19 | 16 | 11 | 20 | 16 | 17 | 13 | |
92 | 79 | 97 | 89 | 64 | 47 | 83 | 68 | 71 | 59 |
某同學每周用于數(shù)學學習的時間為18小時,試預測該生數(shù)學成績.
查看答案和解析>>
科目: 來源: 題型:
【題目】(題文)某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗數(shù)據(jù)統(tǒng)計如下:
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗總次數(shù) |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實驗的統(tǒng)計數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),丙地只要是小雨或中雨即達到理想狀態(tài),記“甲、乙、丙三地中達到理想狀態(tài)的個數(shù)”為隨機變量ξ,求隨機變量ξ的分布列和均值E(ξ).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓與直線相切于點,圓心在軸上.
(1)求圓的方程;
(2)過點且不與軸重合的直線與圓相交于兩點,為坐標原點,直線分別與直線相交于兩點,記,的面積分別是,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com