科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若a>0,設(shè)是函數(shù)圖象上的任意兩點(diǎn),記直線AB的斜率為k,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分。設(shè)在甲、乙的比賽中,每次發(fā)球,甲發(fā)球得1分的概率為,乙發(fā)球得1分的概率為,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立,甲、乙的一局比賽中,甲先發(fā)球.則開始第4次發(fā)球時,甲、乙的比分為1比2的概率為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在內(nèi)有兩個極值點(diǎn)x1,x2(x1<x2),其中a為常數(shù).
(1)求實數(shù)a的取值范圍;
(2)求證:x1+x2>2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點(diǎn),垂足為E,點(diǎn)F是PB上一點(diǎn),則下列判斷中不正確的是( )﹒
A.平面PACB.C.D.平面平面PBC
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)是,左右頂點(diǎn)是,離心率是,過的直線與橢圓交于兩點(diǎn)P、Q(不是左、右頂點(diǎn)),且的周長是,
直線與交于點(diǎn)M.
(1)求橢圓的方程;
(2)(ⅰ)求證直線與交點(diǎn)M在一條定直線l上;
(ⅱ)N是定直線l上的一點(diǎn),且PN平行于x軸,證明:是定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=AD,E是線段PD上的點(diǎn),F是線段AB上的點(diǎn),
且.
(1)證明:EF∥平面PBC;
(2)是否存在實數(shù)λ,使得異面直線EF與CD所成角為60°?若存在,試求出λ的值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y2=4x與橢圓E:1(a>b>0)有一個公共焦點(diǎn)F.設(shè)拋物線C與橢圓E在第一象限的交點(diǎn)為M.滿足|MF|.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(1,)的直線交拋物線C于A、B兩點(diǎn),直線PO交橢圓E于另一點(diǎn)Q.若P為AB的中點(diǎn),求△QAB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正三棱錐,一個正三棱柱的一個底面的三個頂點(diǎn)在正三棱錐的三條側(cè)棱上,另一底面在正三棱錐的底面上,若正三棱錐的高為15,底面邊長為12,內(nèi)接正三棱柱的側(cè)面積為120.
(1)求三棱柱的高;
(2)求棱柱的上底面截棱錐所得的小棱錐與原棱錐的側(cè)面積之比.
查看答案和解析>>
科目: 來源: 題型:
【題目】越接近高考學(xué)生焦慮程度越強(qiáng),四個高三學(xué)生中大約有一個有焦慮癥,經(jīng)有關(guān)機(jī)構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對應(yīng)的正常值變化情況如下表:
周數(shù)x | 6 | 5 | 4 | 3 | 2 | 1 |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
(1)作出散點(diǎn)圖:
(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程 (精確到0.01);
(3)根據(jù)經(jīng)驗,觀測值為正常值的0.85~1.06為正常,若1.06~1.12為輕度焦慮,1.12~1.20為中度焦慮,1.20及其以上為重度焦慮,若為中度焦慮及其以上,則要進(jìn)行心理疏導(dǎo),若一個學(xué)生在距高考第二周時觀測值為100,則該學(xué)生是否需要進(jìn)行心理疏導(dǎo)?
(, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com