相關(guān)習(xí)題
 0  263841  263849  263855  263859  263865  263867  263871  263877  263879  263885  263891  263895  263897  263901  263907  263909  263915  263919  263921  263925  263927  263931  263933  263935  263936  263937  263939  263940  263941  263943  263945  263949  263951  263955  263957  263961  263967  263969  263975  263979  263981  263985  263991  263997  263999  264005  264009  264011  264017  264021  264027  264035  266669 

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,并取相同的單位長度,曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)過點作直線的垂線交曲線兩點,求.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當(dāng)有兩個極值點時,總有,求此時實數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖①,在等腰梯形中,分別為的中點 中點,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中.

(1)證明:

(2)求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,.則下列結(jié)論正確的是( ).

A.當(dāng)時,

B.函數(shù)有五個零點

C.若關(guān)于的方程有解,則實數(shù)的取值范圍是

D.,恒成立

查看答案和解析>>

科目: 來源: 題型:

【題目】石嘴山市第三中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結(jié)論即可);

(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知平面直角坐標(biāo)系,直線過點,且傾斜角為,以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓交于兩點,若,求直線的傾斜角的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,拋物線為過焦點的弦,過,分別作拋物線的切線,兩切線交于點,設(shè),,,則下列結(jié)論正確的是( ).

A.的斜率為1,則

B.的斜率為1,則

C.恒在平行于軸的直線

D.的值隨著斜率的變化而變化

查看答案和解析>>

科目: 來源: 題型:

【題目】下列結(jié)論正確的是( ).

A.互為共軛復(fù)數(shù)的充分不必要條件

B.如圖,在復(fù)平面內(nèi),若復(fù)數(shù),對應(yīng)的向量分別是,,則復(fù)數(shù)對應(yīng)的點的坐標(biāo)為

C.若函數(shù)恰在上單調(diào)遞減,則實數(shù)的值為4

D.函數(shù)在點處的切線方程為

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(1)若上為單調(diào)遞增,求實數(shù)的取值范圍;

(2)若,且,求證:對定義域內(nèi)的任意實數(shù),不等式恒成立.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng),解不等式;

(Ⅱ),對任意都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案