科目: 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1,若AB=BC,E,F分別是AB1,BC1的中點,則下列結(jié)論中不成立的是( )
A.EF與BB1垂直B.EF⊥平面BDD1B1
C.EF與C1D所成的角為45°D.EF∥平面A1B1C1D1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓, 是圓M內(nèi)一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當(dāng)點P在圓M上運動時,點Q的軌跡為曲線E
(1)求曲線E的方程;
(2)過點D(0,3)作直線m與曲線E交于A,B兩點,點C滿足 (O為原點),求四邊形OACB面積的最大值,并求此時直線m的方程;
(3)已知拋物線上,是否存在直線與曲線E交于G,H,使得G,H的中點F落在直線y=2x上,并且與拋物線相切,若直線存在,求出直線的方程,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市為調(diào)研學(xué)校師生的環(huán)境保護(hù)意識,決定在本市所有學(xué)校中隨機(jī)抽取60所進(jìn)行環(huán)境綜合考評成績達(dá)到80分以上(含80分)為達(dá)標(biāo).60所學(xué)校的考評結(jié)果頻率分布直方圖如圖所示(其分組區(qū)間為[50,60),[60,70),[70,80),[80,90),[90,100]).
(Ⅰ)試根據(jù)樣本估汁全市學(xué)校環(huán)境綜合考評的達(dá)標(biāo)率;
(Ⅱ)若考評成績在[90.100]內(nèi)為優(yōu)秀.且甲乙兩所學(xué)?荚u結(jié)果均為優(yōu)秀從考評結(jié)果為優(yōu)秀的學(xué)校中隨機(jī)地抽取兩所學(xué)校作經(jīng)驗交流報告,求甲乙兩所學(xué)校至少有一所被選中的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)求直線PE與平面PBC所成角的正弦值.
(3)在PC上是否存在一點Q,使得平面QAD與平面PBC所成銳二面角的大小為.
查看答案和解析>>
科目: 來源: 題型:
【題目】坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為().
(1)寫出直線的直角坐標(biāo)方程與曲線的普通方程;
(2)平移直線使其經(jīng)過曲線的焦點,求平移后的直線的極坐標(biāo)方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠DAB=60°,AB=2,AD=4,將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求證:AB⊥DE;
(2)若點F為BE的中點,求直線AF與平面ADE所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點P在曲線x2+y2=1上運動,過點P作x軸的垂線,垂足為Q,動點M滿足.
(1)求動點M的軌跡方程;
(2)點AB在直線x﹣y﹣4=0上,且AB=4,求△MAB的面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點.
(1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;
(2)當(dāng)△VAB為邊長為的正三角形時,求四面體V﹣DEB的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的三邊BC,CA,AB的中點分別是D(5,3),E(4,2),F(1,1).
(1)求△ABC的邊AB所在直線的方程及點A的坐標(biāo);
(2)求△ABC的外接圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com