科目: 來源: 題型:
【題目】設(shè)是公差不為零的等差數(shù)列,滿足,,設(shè)正項數(shù)列的前項和為,且.
(1)求數(shù)列和的通項公式;
(2)在和之間插入1個數(shù),使、、成等差數(shù)列;在和之間插入2個數(shù)、,使、、、成等差數(shù)列;;在和之間插入個數(shù)、、、,使、、、、、成等差數(shù)列.
① 求;
② 對于①中的,是否存在正整數(shù)、,使得成立?若存在,求出所有的正整數(shù)對;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點是軸下方(不含軸)一點,拋物線上存在不同的兩點、滿足,,其中為常數(shù),且、兩點均在上,弦的中點為.
(1)若點坐標為,時,求弦所在的直線方程;
(2)在(1)的條件下,如果過點的直線與拋物線只有一個交點,過點的直線與拋物線也只有一個交點,求證:若和的斜率都存在,則與的交點在直線上;
(3)若直線交拋物線于點,求證:線段與的比為定值,并求出該定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)滿足“存在正數(shù),使得對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在,使成立”,則稱該函數(shù)為“依附函數(shù)”.
(1)分別判斷函數(shù)①,②是否為“依附函數(shù)”,并說明理由;
(2)若函數(shù)的值域為,求證:“是‘依附函數(shù)’”的充要條件是“”.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,用一個半徑為10厘米的半圓紙片卷成一個最大的無底圓錐,放在水平桌面上,被一陣風吹倒.
(1)求該圓錐的表面積和體積;
(2)求該圓錐被吹倒后,其最高點到桌面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若函數(shù)在點處的切線的斜率為,求實數(shù)的值;
(2)當時,討論函數(shù)的單調(diào)性;
(3)若關(guān)于的不等式在區(qū)間上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)橢圓:的左、右焦點分別為,,離心率為,過點的直線交橢圓于點、(不與左右頂點重合),連結(jié)、,已知周長為8.
(1)求橢圓的方程;
(2)若直線的斜率為1,求的面積;
(3)設(shè),且,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)是各項均為正數(shù)的等差數(shù)列,,是和的等比中項,的前項和為,.
(1)求和的通項公式;
(2)設(shè)數(shù)列的通項公式.
(i)求數(shù)列的前項和;
(ii)求.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的幾何體中,和均為以為直角頂點的等腰直角三角形,,,,,為的中點.
(1)求證:;
(2)求二面角的大。
(3)設(shè)為線段上的動點,使得平面平面,求線段的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,隨著全球石油資源緊張、大氣污染日益嚴重和電池技術(shù)的提高,電動汽車已被世界公認為21世紀汽車工業(yè)改造和發(fā)展的主要方向.為了降低對大氣的污染和能源的消耗,某品牌汽車制造商研發(fā)了兩款電動汽車車型和車型,并在黃金周期間同時投放市場.為了了解這兩款車型在黃金周的銷售情況,制造商隨機調(diào)查了5家汽車店的銷量(單位:臺),得到下表:
店 | 甲 | 乙 | 丙 | 丁 | 戊 |
車型 | 6 | 6 | 13 | 8 | 11 |
車型 | 12 | 9 | 13 | 6 | 4 |
(1)若從甲、乙兩家店銷售出的電動汽車中分別各自隨機抽取1臺電動汽車作滿意度調(diào)查,求抽取的2臺電動汽車中至少有1臺是車型的概率;
(2)現(xiàn)從這5家汽車店中任選3家舉行促銷活動,用表示其中車型銷量超過車型銷量的店的個數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為常數(shù),為自然對數(shù)的底數(shù))的圖象在點處的切線與該函數(shù)的圖象恰好有三個公共點,則實數(shù)的取值范圍是( )
A.B.或
C.D.或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com