科目: 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場(chǎng)的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計(jì)分析,得到甲在和乙的第一場(chǎng)比賽中,取勝的概率為0.5,受心理方面的影響,前一場(chǎng)比賽結(jié)果會(huì)對(duì)甲的下一場(chǎng)比賽產(chǎn)生影響,如果甲在某一場(chǎng)比賽中取勝,則下一場(chǎng)取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )
A.0.162B.0.18C.0.168D.0.174
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知長(zhǎng)方體,,,,已知P是矩形內(nèi)一動(dòng)點(diǎn),與平面所成角為,設(shè)P點(diǎn)形成的軌跡長(zhǎng)度為,則_________;當(dāng)的長(zhǎng)度最短時(shí),三棱錐的外接球的表面積為_____________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求 函數(shù)的單調(diào)區(qū)間;
(2)定義:對(duì)于函數(shù),若存在,使成立,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn). 如果函數(shù)存在兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四邊形中,,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面;
(2)若為的中點(diǎn),二面角等于60°,求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門(mén)統(tǒng)考科目和物理、化學(xué)等六門(mén)選考科目構(gòu)成.將每門(mén)選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).
某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書(shū)、數(shù)”. 為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿(mǎn)足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須相鄰安排的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知拋物線(xiàn):的焦點(diǎn)為,過(guò)作斜率為的直線(xiàn)交于,兩點(diǎn),以線(xiàn)段為直徑的圓.當(dāng)時(shí),圓的半徑為2.
(1)求的方程;
(2)已知點(diǎn),對(duì)任意的斜率,圓上是否總存在點(diǎn)滿(mǎn)足,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】年是打贏藍(lán)天保衛(wèi)戰(zhàn)三年行動(dòng)計(jì)劃的決勝之年,近年來(lái),在各地各部門(mén)共同努力下,藍(lán)天保衛(wèi)戰(zhàn)各項(xiàng)任務(wù)措施穩(wěn)步推進(jìn),取得了積極成效,某學(xué)生隨機(jī)收集了甲城市近兩年上半年中各天的空氣量指數(shù),得到頻數(shù)分布表如下:
年上半年中天的頻數(shù)分布表
的分組 | |||||
天數(shù) |
年上半年中天的頻數(shù)分布表
的分組 | |||||
天數(shù) |
(1)估計(jì)年上半年甲城市空氣質(zhì)量?jī)?yōu)良天數(shù)的比例;
(2)求年上半年甲城市的平均數(shù)和標(biāo)準(zhǔn)差的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);(精確到)
(3)用所學(xué)的統(tǒng)計(jì)知識(shí),比較年上半年與年上半年甲城市的空氣質(zhì)量情況.
附:
的分組 | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱錐中,四邊形為正方形,,分別為,中點(diǎn).
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565404160/STEM/3bba3a8519b8447aaec6f2ca7eb73ba0.png]
(1)證明:平面;
(2)已知,,,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com