相關習題
 0  35561  35569  35575  35579  35585  35587  35591  35597  35599  35605  35611  35615  35617  35621  35627  35629  35635  35639  35641  35645  35647  35651  35653  35655  35656  35657  35659  35660  35661  35663  35665  35669  35671  35675  35677  35681  35687  35689  35695  35699  35701  35705  35711  35717  35719  35725  35729  35731  35737  35741  35747  35755  266669 

科目: 來源: 題型:

在直角坐標系xOy中,在y軸上截距為-1且傾斜角為
4
的直線方程為( 。

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x+log2
x
3-x
(x∈(0,3))

(Ⅰ)求f(x)+f(3-x);并判斷函數(shù)y=f(x)的圖象是否為一中心對稱圖形;
(Ⅱ)記S(n)=
1
2n
2n-1
i=1
f(1+
i
2n
)(n∈N*)
,求S(n);
(Ⅲ)若函數(shù)f(x)的圖象與直線x=1,x=2以及x軸所圍成的封閉圖形的面積為S,試探究S(n)與S的大小關系.

查看答案和解析>>

科目: 來源: 題型:

(2008•揚州二模)數(shù)列{an}的首項a1=1,前n項和為Sn,滿足關系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…)
(1)求證:數(shù)列{an}為等比數(shù)列;
(2)設數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f(
1bn-1
),(n=2,3,4…),求bn
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)如圖,AB為圓O的直徑,點E,F(xiàn)在圓上,AB∥EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,EF=1.
(Ⅰ)求證:BF⊥平面ADF;
(Ⅱ)求BF與平面ABCD所成的角;
(Ⅲ)在DB上是否存在一點M,使ME∥平面ADF?若不存在,請說明理由;若存在,請找出這一點,并證明之.

查看答案和解析>>

科目: 來源: 題型:

(2012•藍山縣模擬)已知函數(shù)f(x)=
3
sin
x
4
cos
x
4
+cos2
x
4

(1)若f(x)=1,求cos(
3
-x)的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足acosC+
1
2
c=b,求f(B)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
,
π
2
),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對x∈R恒成立;
④對于任意實數(shù)a,要使函數(shù)y=5cos(
2k+1
3
πx-
π
6
)(k∈N*)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號是
②④
②④

查看答案和解析>>

科目: 來源: 題型:

設f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,則a2011=
(
1
2
)
2012
(
1
2
)
2012

查看答案和解析>>

科目: 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),且f(x-
3
2
)=f(x+
1
2
)
恒成立,當x∈[2,3]時,f(x)=x,則當x∈(-1,0)時,函數(shù)f(x)的解析式為
f(x)=2-x
f(x)=2-x

查看答案和解析>>

科目: 來源: 題型:

已知:3Sinβ=Sin(2α+β),則tanβ的最大值是
2
4
2
4

查看答案和解析>>

科目: 來源: 題型:

(2012•天津模擬)設y=f(x)在(-∞,1]上有定義,對于給定的實數(shù)K,定義fk(x)=
f(x),f(x)≤K
K,f(x)>K
,給出函數(shù)f(x)=2x+1-4x,若對于任意x∈(-∞,1],恒有fk(x)=f(x),則( 。

查看答案和解析>>

同步練習冊答案