5.汽車質量m=2.0×103kg,行駛在平直公路上時所受阻力恒為車重的0.1倍,汽車發(fā)動機額定功率為80Kw.汽車從靜止開始先勻加速啟動,加速度a=1.0m/s2,達到額定功率后,汽車保持功率不變又加速行駛直到獲得最大速度后才勻速行駛.若g取10m/s2,求:
(1)汽車勻加速啟動階段結束時的速度以及汽車的最大行駛速度;
(2)當速度為5m/s時,汽車牽引力的瞬時功率;
(3)當汽車的速度為32m/s時的加速度.

分析 首先要分析清楚汽車的運動過程:
第一階段:勻加速運動階段.
開始,汽車由靜止做勻加速直線運動,這個過程中V增大,汽車功率P=FV也增大;
第二階段:變加速運動階段,加速度逐漸減。
汽車輸出功率達到其允許的最大值并保持不變時,其功率已不能維持汽車繼續(xù)做勻加速直線運動了,此時汽車雖然做加速運動,但加速度逐漸減小,直到a=0.這個過程中P不變,F(xiàn)減小,V增大;
第三階段:勻速直線運動階段.
加速度等于0后,速度已達到最大值Vm,此時汽車做勻速直線運動,此時F=f,P=FV=fVm

解答 解:(1)汽車到達最大行駛速度時,牽引力和阻力相等,所以
${v_m}=\frac{p_額}{f}=\frac{{80×1{0^3}}}{{0.1×2.0×1{0^3}×10}}=40m/s$
設汽車勻加速啟動階段結束時的速度為v1
由牛頓第二定律得 F-f=ma,
可得 F=4×103N,
由p=Fv1,可得 ${v_1}=\frac{{80×{{10}^3}}}{{4×{{10}^3}}}=20m/s$,
(2)當速度為5m/s時,小于勻加速運動的最大的速度,此時處于勻加速階段,
所以牽引力的瞬時功率為:p=Fv=4×103×5kw=20kW,
(3)當速度為32m/s時,大于勻加速運動的最大的速度,此時處于恒定功率啟動階段,設牽引力為F′,加速度為a′,
由 F′=$\frac{{P}_{額}}{v}$=$\frac{80×{10}^{3}}{32}$N=2.5×103N,
由 F′-f=ma′,
得a′=0.25m/s2
答:(1)汽車勻加速啟動階段結束時的速度是20m/s;汽車的最大行駛速度是40m/s;
(2)當速度為5m/s時,汽車牽引力的瞬時功率是20kW;
(3)當汽車的速度為32m/s時的加速度0.25m/s2

點評 高中物理中,分析受力和物理過程是非常重要的.最大功率要用第三階段中的Pm=FV=fVm計算,而不能用第一階段中的F與第三階段中的Vm的乘積計算,兩個F是不同的;Vm是最終速度,整個過程并不全是勻加速運動,不能用Vm=at來計算整個過程時間. 要注意某一時刻的物理量要對應起來.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:選擇題

15.下列關于磁感應強度及磁場對通電導線、帶電粒子作用的說法正確的是( 。
A.由$B=\frac{F}{IL}$可知,B與F成正比,與IL成反比
B.磁感應強度的方向與該處電流受力方向一致
C.一段通電直導線在磁場中某處不受磁場力作用,則該處磁感應強度為零
D.帶電粒子在磁場中運動時,可能不受磁場力作用

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

16.圖中A、B氣缸的長度為L=30cm,橫截面積為S=20cm2,C是可在氣缸內無摩擦滑動的、體積不計的活塞,D為閥門.整個裝置均由導熱材料制成.起初閥門關閉,A內有壓強pA=2.0×105 Pa的氮氣,B內有壓強pB=1.0×105 Pa的氧氣.閥門打開后,活塞C向右移動,最后達到平衡.
①求活塞C移動的距離及平衡后B中氣體的壓強;
②活塞C移動過程中A中氣體對外做功為25J,則A中氣體是吸熱還是放熱?吸收或者放出的熱量為多少?(假定氧氣和氮氣均為理想氣體,連接氣缸的管道體積可忽略)

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

13.如圖所示,半徑為r、質量不計的圓盤盤面與地面相垂直,可繞圓心處垂直盤面的光滑水平固定軸O自由轉動,在盤的最右邊緣固定有一個質量為m的小球A,在O點的正下方離O點$\frac{r}{2}$處固定一個質量也為m的小球B.放開圓盤讓其由靜止開始自由轉動,問:
(1)A球由起始位置轉到最低點的過程中,重力勢能減少了多少?
(2)A球轉到最低點時的線速度是多大?
(3)A球由起始位置轉到最低點的過程中,圓盤對B球做了多少功?

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

20.如圖,豎直放置一半徑為r的光滑圓軌道,b為軌道直徑的兩端,該直徑與水平面平行.現(xiàn)有一質量為m的小球(大小忽略不計)在水平向右的a、恒力F作用下沿軌道內側運動,經過a點和b點時對軌道壓力的大小分別為Na和Nb,求
(1)水平向右的恒力F為多少?
(2)小球經過a點時動能為多少?

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

4.如圖所示,水平面固定一個帶有一段圓弧的軌道,圓弧對應圓心角為θ=53°.現(xiàn)有一質量為m1的滑塊A以一定的初速度從光滑軌道的左側滑上軌道,由P點進入圓軌道,再從Q點飛離圓軌道,滑塊滑出軌道后恰好與右邊水平桌面上的一靜止物塊B水平相碰,B的質量為m2,A、B碰后粘合在一起,然后滑行距離S停下,桌面與AB間的摩擦因數(shù)都是μ.已知m1=2m2,sin53°=0.8,cos53°=0.6,重力加速度為g.求滑塊A在Q點時的速度.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

11.下列說法正確的是( 。
A.電源的電動勢在數(shù)值上等于電源在搬運單位電荷時非靜電力所做的功
B.電阻率是反映材料導電性能的物理量,僅與材料種類有關,與溫度、壓力和磁場等外界因素無關
C.電流通過導體的熱功率與電流大小成正比
D.電容是表征電容器容納電荷本領的物理量.由C=$\frac{Q}{U}$可知電容的大小是由Q(帶電量)或U(電壓)決定的

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

8.下列關于牛頓的貢獻表述正確有( 。
A.牛頓發(fā)現(xiàn)了萬有引力定律
B.牛頓通過實驗測出了萬有引力常量
C.牛頓應用“理想斜面實驗”推翻了“力是維持物體運動的原因”的觀點
D.只有在國際單位制中,牛頓第二定律的表達式才是F=ma

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

9.圖1為驗證牛頓第二定律的實驗裝置示意圖.圖中打點計時器的電源為50Hz的交流電源,打點的時間間隔用△t表示.在小車質量未知的情況下,某同學設計了一種方法用來研究“在外力一定的條件下,物體的加速度與其質量間的關系”.

(1)完成下列實驗步驟中的填空:
①平衡小車所受的阻力:小吊盤中不放物塊,調整木板右端的高度,用手輕撥小車,直到打點計時器打出一系列均勻的點.
②按住小車,在小吊盤中放入適當質量的物塊,在小車中放入砝碼.
③打開打點計時器電源,釋放小車,獲得帶有點跡的紙帶,在紙帶上標出小車中砝碼的質量m.
④按住小車,改變小車中砝碼的質量,重復步驟③.
⑤在每條紙帶上清晰的部分,每5個間隔標注一個計數(shù)點.測量相鄰計數(shù)點的間距s1,s2,….求出與不同m相對應的加速度a.
⑥以砝碼的質量m為橫坐標,$\frac{1}{a}$為縱坐標,在坐標紙上做出$\frac{1}{a}$--m關系圖線.若加速度與小車和砝碼的總質量成反比,則$\frac{1}{a}$與m處應成線性關系(填“線性”或“非線性”).
(2)完成下列填空:
(。┍緦嶒炛,為了保證在改變小車中砝碼的質量時,小車所受的拉力近似不變,小吊盤和盤中物塊的質量之和應滿足的條件是遠小于小車和小車中砝碼的質量之和.

(ⅱ)設紙帶上三個相鄰計數(shù)點的間距為s1、s2、s3.a可用s1、s3和△t表示為a=$\frac{{{s}_{3}-s}_{1}}{5{0(△t)}^{2}}$.圖2為用米尺測量某一紙帶上的s1、s3的情況,由圖可讀出s1=24.2mm,s3=47.2mm.由此求得加速度的大小a=1.15m/s2
(ⅲ)圖3為所得實驗圖線的示意圖.設圖中直線的斜率為k,在縱軸上的截距為b,若牛頓定律成立,則小車受到的拉力為$\frac{1}{k}$,小車的質量為$\frac{k}$.

查看答案和解析>>

同步練習冊答案