分析 (1)根據(jù)萬有引力提供向心力,求出登月艙未減速時的動能,結(jié)合勢能的大小求出總能量的大。鶕(jù)總能量的表達式求出在橢圓軌道上的能量,結(jié)合能量守恒求出發(fā)動機做功的大小.
(2)根據(jù)萬有引力提供向心力求出軌道艙的周期,結(jié)合開普勒第三定律求出登月艙和軌道艙周期的關(guān)系,抓住軌道艙運動的周期性求出登月艙在月球表面停留的時間.
解答 解:(1)根據(jù)$G\frac{Mm}{(3{R}_{m})^{2}}=m\frac{{v}^{2}}{3{R}_{m}}$得:${v}^{2}=\frac{GM}{3{R}_{m}}$,
登月艙未減速時,動能為:Ek1=$\frac{1}{2}{m}_{1}{v}^{2}=\frac{1}{2}{m}_{1}\frac{GM}{3{R}_{m}}$,
總能量為:E=${E}_{k1}+{E}_{p}=\frac{1}{6}\frac{GM{m}_{1}}{{R}_{m}}-\frac{GM{m}_{1}}{3{R}_{m}}$=$-\frac{GM{m}_{1}}{6{R}_{m}}$,
在橢圓軌道運行時,半長軸為:a=$\frac{3{R}_{m}+{R}_{m}}{2}=2{R}_{m}$,
則登月艙減速后的總能量為:$E′=\frac{-GM{m}_{1}}{2×2{R}_{m}}=-\frac{GM{m}_{1}}{4{R}_{m}}$,
根據(jù)能量守恒得,發(fā)動機做功為:$W=E′-E=-\frac{GM{m}_{1}}{12{R}_{m}}$.
(2)設(shè)軌道艙的周期為T,根據(jù)$G\frac{Mm}{(3{R}_{m})^{2}}=m•3{R}_{m}•\frac{4{π}^{2}}{{T}^{2}}$,
解得:$T=\sqrt{\frac{4{π}^{2}•(3{R}_{m})^{3}}{GM}}$,
登月艙的周期為T′,根據(jù)開普勒第三定律知,$\frac{(3{R}_{m})^{3}}{{T}^{2}}=\frac{(2{R}_{m})^{3}}{T{′}^{2}}$,
則有:$T{′}^{2}=\frac{8}{27}{T}^{2}$,
則停留時間△t=nT-T′=$(n-\sqrt{\frac{8}{27}})(6π{R}_{m})\sqrt{\frac{3{R}_{m}}{GM}}$,n=1,2,3….
答:(1)登月艙減速時,發(fā)動機做了$-\frac{GM{m}_{1}}{12{R}_{m}}$的功.
(2)登月艙在月球表面可逗留時間為$(n-\sqrt{\frac{8}{27}})(6π{R}_{m})\sqrt{\frac{3{R}_{m}}{GM}}$,n=1,2,3….
點評 本題考查了萬有引力定律、開普勒第三定律、能量守恒的綜合運用,結(jié)合萬有引力提供向心力求出動能和周期是解決本題的關(guān)鍵.
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 不受摩擦力的作用 | B. | 受到向前(水平向右)的摩擦力作用 | ||
C. | 所受合外力的沿斜面向上 | D. | 處于失重狀態(tài) |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | F1=F2 | B. | Fl<F2 | C. | v′1=v′2 | D. | tl>t2 |
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 15N | B. | 10N | C. | 5N | D. | 20N |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com