分析 (1)設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),代入A的坐標(biāo),解方程可得b,進(jìn)而得到雙曲線的方程;
(2)設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),由題意可得c=$\sqrt{10}$,b=1,由a,b,c的關(guān)系可得a,進(jìn)而得到雙曲線的方程;
(3)設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),運(yùn)用離心率公式及a,b,c的關(guān)系,計(jì)算即可得到所求雙曲線的方程.
解答 解:(1)設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
由題意可得$\frac{25}{{a}^{2}}$-$\frac{4}{^{2}}$=1,又a=2$\sqrt{5}$,
解得b=4,
即有雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1;
(2)設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),
由題意可得c=$\sqrt{10}$,b=1,
可得a=$\sqrt{{c}^{2}-{a}^{2}}$=3,
即有雙曲線的方程為$\frac{{y}^{2}}{9}$-x2=1;
(3)設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
由題意可得c=5,e=$\frac{c}{a}$=$\frac{5}{4}$,
解得a=4,b=$\sqrt{{c}^{2}-{a}^{2}}$=3,
即有雙曲線的方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1.
點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用待定系數(shù)法,點(diǎn)滿足方程和離心率公式,及基本量的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k1+k3=k2 | B. | k1+k3=2k2 | C. | k1k3=k2 | D. | k1k3=k${\;}_{2}^{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,$\frac{11}{6}$] | B. | [$\frac{1}{2}$,$\frac{11}{6}$) | C. | ($\frac{1}{3}$,$\frac{13}{6}$] | D. | [$\frac{1}{3}$,$\frac{13}{6}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com