0  492  500  506  510  516  518  522  528  530  536  542  546  548  552  558  560  566  570  572  576  578  582  584  586  587  588  590  591  592  594  596  600  602  606  608  612  618  620  626  630  632  636  642  648  650  656  660  662  668  672  678  686  3002 

2009屆高考地理復(fù)習(xí) 旅游地理測(cè)試題

                       

說明:1、本試卷共分第Ⅰ、Ⅱ卷兩部分,第Ⅰ卷做答題卡,第Ⅱ卷做在答題卷上。

      2、本試卷共35題,滿分150分,考試時(shí)間為120分鐘

第Ⅰ卷(選擇題,共70分)

試題詳情

橢圓的基本概念

〖考試內(nèi)容〗橢圓及其標(biāo)準(zhǔn)方程,焦點(diǎn)、焦距,范圍、對(duì)稱性、頂點(diǎn)、長(zhǎng)軸、短軸、離心率、準(zhǔn)線,橢圓的畫法.

〖考試要求〗掌握橢圓標(biāo)準(zhǔn)方程及幾何性質(zhì),會(huì)根據(jù)所給條件畫出橢圓,了解橢圓的一些實(shí)際應(yīng)用.

〖雙基回顧〗

定義

1

到兩個(gè)定點(diǎn)的距離之和等于定值的點(diǎn)的軌跡

2

到定點(diǎn)的距離與到定直線的距離之比等于定值(小于1)的點(diǎn)的軌跡

圖形

 

頂點(diǎn)

 

 

焦點(diǎn)

 

 

長(zhǎng)軸

 

 

短軸

 

 

焦距

 

準(zhǔn)線方程

 

 

離心率

 

焦半徑

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

〖知識(shí)點(diǎn)訓(xùn)練〗

  1、平面上P點(diǎn)到定點(diǎn)F1、F2距離之和等于|F1F2|,則P點(diǎn)的軌跡是………………………………(    )

(A)橢圓            (B)直線F1F2        (C)線段F1F2           (D) F1F2中垂線

2、若橢圓經(jīng)過原點(diǎn),且焦點(diǎn)為,則其離心率為………………………………(    )

(A)              (B)                        (C)                 (D)

3、橢圓的一個(gè)焦點(diǎn)是(0,2),那么k等于……………………………………(    )

(A)-1             (B)1                  (C)                  (D)-

  〖例題分析〗

  1、已知橢圓的焦點(diǎn)為F1(0,-1)、F2(0,1),直線y=4是其一條準(zhǔn)線.

    ⑴求此橢圓方程;

⑵又設(shè)P在橢圓上并且滿足|PF1|-|PF2|=1,求tg∠F1PF2.

 

 

 

 

 

2、F1、F2是橢圓焦點(diǎn),AB是經(jīng)過F1的弦,如果|AB|=8,求△AF2B的周長(zhǎng)。

 

 

 

 

 

 

 

3、已知常數(shù)a>0,在矩形ABCD中,AB=4,BC=4a,O是AB中點(diǎn),點(diǎn)E、F、G分別在BC、CD、DA上移動(dòng),并且,P是GE、OF交點(diǎn),問是否存在兩個(gè)定點(diǎn),使P到這兩個(gè)定點(diǎn)的距離和為定值?如果存在,求出這兩個(gè)點(diǎn)的坐標(biāo)及此定值,如果不存在,說明理由!(2003廣東高考題)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

〖課堂練習(xí)〗

1、橢圓的離心率為,則實(shí)數(shù)m=     .

  2、如圖,F(xiàn)是橢圓焦點(diǎn),A是頂點(diǎn),l是準(zhǔn)線,則在下列關(guān)系:e =,e =,e =,e =,e =中,能正確表示離心率的有(    )(A)2個(gè)    (B)3個(gè)    (C)4個(gè)     (D) 5個(gè)

〖能力測(cè)試〗                                  姓名                得分        

  1、橢圓的準(zhǔn)線平行于x軸,則有…………………………………………(    )

(A)0<m<       (B)m<且m≠0    (C)m>0且m≠1     (D) m>且m≠1

  2、如果橢圓的兩個(gè)頂點(diǎn)為(3,0),(0,4),則其標(biāo)準(zhǔn)方程為………………………………(    )

(A)    (B)     (C)      (D)

  3、橢圓的兩個(gè)焦點(diǎn)和中心把準(zhǔn)線間的距離四等份,則其焦點(diǎn)對(duì)短軸端點(diǎn)張角為……………(    )

(A)45º              (B)60º             (C)90º              (D) 120º

4、F1、F2是橢圓焦點(diǎn),點(diǎn)P在橢圓上線段PF1的中點(diǎn)在y軸上,則|PF1|是|PF2|的(    )

(A)7倍              (B)5倍            (C)4倍              (D)3倍

  5、橢圓上有一點(diǎn)P(P在第一象限內(nèi))滿足PF1⊥PF2,則點(diǎn)P坐標(biāo)為          .

  6、求以橢圓的長(zhǎng)軸端點(diǎn)為短軸端點(diǎn),并且經(jīng)過點(diǎn)P(-4,1)的橢圓方程.

 

 

 

 

 

 

 

7、點(diǎn)M是橢圓上的一點(diǎn),F(xiàn)1、F2是左右焦點(diǎn),∠F1MF2=60º,求△F1MF2的面積.

 

 

 

 

 

 

 

 

 

 

 

 

直線與橢圓的位置關(guān)系

〖考試內(nèi)容〗橢圓及其標(biāo)準(zhǔn)方程,焦點(diǎn)、焦距,范圍、對(duì)稱性、頂點(diǎn)、長(zhǎng)軸、短軸、離心率、準(zhǔn)線,橢圓的畫法.

〖復(fù)習(xí)要求〗掌握直線與橢圓位置關(guān)系的判定方法――“△”法;

掌握弦長(zhǎng)公式;“韋達(dá)定理、設(shè)而不求”的技巧在解題中的使用.

〖知識(shí)點(diǎn)訓(xùn)練〗

  1、直線x=2與橢圓的交點(diǎn)個(gè)數(shù)為…………………………………………………(    )

(A)0個(gè)              (B)1個(gè)              (C) 2個(gè)               (D) 3個(gè)

  2、直線y=1被橢圓截得的線段長(zhǎng)為………………………………………………(    )

(A)4             (B)3             (C) 2              (D)

  3、直線y=mx+1與橢圓x2+4y2=1有且只有一個(gè)交點(diǎn),則m2=………………………………(    )

(A)               (B)                (C)                (D)

  4、橢圓的長(zhǎng)軸端點(diǎn)為M、N,不同于M、N的點(diǎn)P在此橢圓上,那么PM、PN的斜率之積為…………………………………………………………………………………………(    )

(A)-              (B)-              (C)                (D)

〖例題分析〗

1、橢圓的焦點(diǎn)為 點(diǎn)P為其上的動(dòng)點(diǎn),當(dāng)為鈍角時(shí),求點(diǎn)P的橫坐標(biāo)的取值范圍.

 

 

 

 

 

2、已知橢圓C的焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6,設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。

 

 

 

 

  3、橢圓E:內(nèi)有一點(diǎn)P(2,1),求經(jīng)過P并且以P為中點(diǎn)的弦所在直線方程.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  4、過P(-,0)作一直線l交橢圓E:11x2+y2=9于M、N兩點(diǎn),問l的傾斜角多大時(shí),以M、N為直徑的圓過原點(diǎn)?

 

 

 

 

 

 

 

 

 

 

 

〖課堂練習(xí)〗

  如果焦點(diǎn)是F(0,±5)的橢圓截直線3x-y-2=0所得弦的中點(diǎn)橫坐標(biāo)為,求此橢圓方程.

 

 

 

 

 

 

 

〖課堂小結(jié)〗

   解決直線與橢圓位置關(guān)系問題時(shí),對(duì)于消元后的一元二次方程必須討論二次項(xiàng)系數(shù)和“△”;另外,韋達(dá)定理和設(shè)而不求的技巧是必須掌握的.

〖能力測(cè)試〗                                  姓名                得分        

  1、已知點(diǎn)(4,2)是直線l被橢圓所截得的弦中點(diǎn),則l方程是………………(    )

(A)x-2y=0       (B)x+2y-4=0        (C)2x+3y+4=0        (D) x+2y-8=0

  2、橢圓上有三點(diǎn)A(x1,y1)、B(4,)、C(x2,y2),如果A、B、C三點(diǎn)到焦點(diǎn)F(4,0)的距離成等差數(shù)列,則x1+x2=              .(提示:利用焦半徑公式)

  3、直線x-y+1=0被橢圓截得的弦長(zhǎng)為                 .

4、橢圓E:ax2+by2=1與直線x+y=1交于A、B兩點(diǎn),M是AB中點(diǎn),如果|AB|=2,且OM的斜率為.    (1)把M點(diǎn)的坐標(biāo)用a、b表示出來;        (2)求此橢圓方程.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

雙曲線(1)

〖考試內(nèi)容〗雙曲線及其標(biāo)準(zhǔn)方程,焦點(diǎn)、焦距,范圍、對(duì)稱性、頂點(diǎn)、長(zhǎng)軸、短軸、離心率、準(zhǔn)線,雙曲線的畫法.

〖考試要求〗掌握雙曲線標(biāo)準(zhǔn)方程及幾何性質(zhì),了解雙曲線的一些實(shí)際應(yīng)用.

定義

1

到兩個(gè)定點(diǎn)的距離之和等于定值的點(diǎn)的軌跡

2

到定點(diǎn)的距離與到定直線的距離之比等于定值(小于1)的點(diǎn)的軌跡

圖形

標(biāo)準(zhǔn)方程

 

 

頂點(diǎn)

 

 

焦點(diǎn)

 

 

焦距

 

準(zhǔn)線方程

 

 

離心率

 

焦半徑

 

 

漸近線

 

 

〖雙基回顧〗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

〖知識(shí)點(diǎn)訓(xùn)練〗

1、焦點(diǎn)為經(jīng)過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是                    .

2、焦點(diǎn)在y軸上,焦距是16,離心率為的雙曲線的標(biāo)準(zhǔn)方程是                  .

3、方程表示雙曲線,則實(shí)數(shù)k的取值范圍是……………………………………(    )

(A)(-2,-3)         (B)(-∞,-2)        (C) (3,+∞)          (D) (-∞,-2)∪(3,+∞)

4、雙曲線的實(shí)軸長(zhǎng)為         ;離心率是        ;漸近線方程是         ;準(zhǔn)線方程是             ;共軛雙曲線方程是            ;

〖例題分析〗

1、⑴求與雙曲線共焦點(diǎn)并且一條準(zhǔn)線方程為x=-的雙曲線方程.

 

 

 

 

 

⑵求與雙曲線共漸近線,并且經(jīng)過點(diǎn)P(2,-2)的雙曲線方程.

 

 

 

 

3、已知點(diǎn),動(dòng)點(diǎn)C到A、B兩點(diǎn)的距離之差的絕對(duì)值為2,點(diǎn)C的軌跡與直線交于D、E兩點(diǎn),求線段DE的長(zhǎng)。(2002年上海高考題)

 

 

 

 

 

 

 

 

 

 

*4、點(diǎn)P到點(diǎn)M(-1,0)、N(1,0)距離之差為2m,到x、y軸距離之比為2,求實(shí)數(shù)m的取值范圍.(2003高考題)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

〖課堂練習(xí)〗

1、雙曲線的實(shí)軸長(zhǎng)為4,虛軸長(zhǎng)為6,焦點(diǎn)在y軸上,則雙曲線的標(biāo)準(zhǔn)方程是………………(    )

(A)   (B)    (C)     (D)  

2、 “ab<0”是“方程ax2+by2=c表示雙曲線”的………………………………………(    )條件

(A)必要不充分    (B)充分不必要      (C)充分必要         (D)既不充分又不必要

〖能力測(cè)試〗                                  姓名                得分        

  1、下列方程中,以x±2y=0為漸近線的雙曲線是……………………………………………(    )

(A)    (B)       (C)      (D)

  2、雙曲線8kx2-ky2=8的一個(gè)焦點(diǎn)為(0,3),則實(shí)數(shù)k=………………………………………(    )

(A)1               (B)-1                (C)              (D)-

  3、雙曲線兩準(zhǔn)線間距離的4倍等于焦距,則離心率等于………………………………………(    )

(A)1               (B)2                  (C)3                  (D)4

  4、等軸雙曲線的一個(gè)焦點(diǎn)為(0,-4),則其準(zhǔn)線方程為                 .

  5、橢圓與雙曲線有相同的焦點(diǎn),則實(shí)數(shù)a=             .

  6、雙曲線 的離心率,則實(shí)數(shù)k的取值范圍是               .

 

 

 

7、若雙曲線的漸近線方程為

⑴求實(shí)數(shù)m之值;     ⑵寫出此雙曲線的焦點(diǎn)坐標(biāo)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

直線與雙曲線的位置關(guān)系

〖考試內(nèi)容〗雙曲線及其標(biāo)準(zhǔn)方程,焦點(diǎn)、焦距,范圍、對(duì)稱性、頂點(diǎn)、長(zhǎng)軸、短軸、離心率、準(zhǔn)線,雙曲線的畫法.

〖考試要求〗掌握雙曲線標(biāo)準(zhǔn)方程及幾何性質(zhì),了解雙曲線的一些實(shí)際應(yīng)用.

〖知識(shí)點(diǎn)訓(xùn)練〗

  1、雙曲線上一點(diǎn)P到左焦點(diǎn)距離為2,則P到右焦點(diǎn)距離為……………………(    )

   (A)8                  (B)4                 (C)11或者7             (D) 8或者4

  2、雙曲線上一點(diǎn)P到右焦點(diǎn)距離為8,則P到右準(zhǔn)線距離為…………………(    )

   (A)                (B)10                (C)2                (D)

  3、雙曲線有相同的………………………………………………(    )

   (A)焦點(diǎn)               (B)準(zhǔn)線              (C)漸近線               (D) 離心率

4、雙曲線x2-y2=16左支上一點(diǎn)P,F(xiàn)1、F2是左右焦點(diǎn),則|PF1|-|PF2|=              .

〖例題分析〗

1、  已知雙曲線與點(diǎn),過點(diǎn)P作直線l與雙曲線交于A、B兩點(diǎn),若P為AB的中點(diǎn)。

⑴求直線AB的方程;

⑵若,是否存在以為中點(diǎn)的弦?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2、設(shè)A、B是雙曲線上的兩點(diǎn),點(diǎn)是線段AB的中點(diǎn)。(2002年江蘇高考題)

⑴求直線AB的方程;

⑵如果線段AB的垂直平分線與雙曲線交于C、D兩點(diǎn),那么A、B、C、D是否共圓,為什么?

 

 

 

 

 

 

 

 

 

 

 

 

3、在雙曲線上支上有不同三點(diǎn)A(x1,y1)、B(,6)、C(x2,y2)到焦點(diǎn)F(0,5)的距離成等差數(shù)列.

  ⑴求y1+y2之值;

⑵證明AC的垂直平分線經(jīng)過一個(gè)定點(diǎn)T并且求出這個(gè)點(diǎn)T的坐標(biāo).

  • x

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    〖課堂練習(xí)〗

    已知為雙曲線的焦點(diǎn),過作垂直于x軸的直線交雙曲線于點(diǎn)P,且。則雙曲線的漸近線方程為                   。(2002年上海春季高考改編)

    〖能力測(cè)試〗                                  姓名                得分         .

    1、 經(jīng)過雙曲線(a、b是正數(shù))的右焦點(diǎn)F1作右支的弦AB,|AF2|+|BF2|=2|AB|,則弦|AB|=…………………………………………………………………………………………(    )

    (A)2a              (B)3a                (C)4a                 (D) 不確定 

    2、雙曲線與直線的交點(diǎn)個(gè)數(shù)是…………………………………(    )

    (A)0               (B)1                 (C)2                  (D)與b的取值有關(guān)

    3、直線被雙曲線截得的弦的中點(diǎn)坐標(biāo)是           ;弦長(zhǎng)是         。

    4、已知P是雙曲線(a、b是正數(shù))上任意一點(diǎn),則P到兩條漸近線的距離之積為      .

    6、 已知F1、F2是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,如果∠F1PF2=,求△F1PF2的面積.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    拋物線的基本概念

    〖考試內(nèi)容〗拋物線及其標(biāo)準(zhǔn)方程,焦點(diǎn)、范圍、對(duì)稱性、頂點(diǎn)、離心率、準(zhǔn)線。

    〖考試要求〗掌握拋物線標(biāo)準(zhǔn)方程及幾何性質(zhì),了解拋物線的一些實(shí)際應(yīng)用.

    〖雙基回顧〗

      

    定義

    到定點(diǎn)與到定直線的距離相等的點(diǎn)的軌跡

    方程

    y2=2px

    y2=-2px

    x2=2py

    x2=-2py

    圖形

    焦點(diǎn)

     

     

     

     

    頂點(diǎn)

     

     

     

     

    準(zhǔn)線

     

     

     

     

     

     

     

     

    焦半徑

     

     

     

     

    焦點(diǎn)弦

     

     

     

     

    離心率

     

     

     

     

    〖知識(shí)點(diǎn)訓(xùn)練〗

      1、拋物線y=4ax2(a<0)的焦點(diǎn)坐標(biāo)為……………………………………………………………(    )

    (A)(,0)            (B)(0,)           (C) (,0)           (D) (0,-)

      2、方程一定不會(huì)表示……………………………………………………(    )

    (A)圓                  (B)橢圓                (C) 雙曲線             (D) 拋物線

      3、拋物線2y2+5x=0的準(zhǔn)線方程是                 .

      4、點(diǎn)M到F(-4,0)的距離比它到直線x-5=0的距離小1,則點(diǎn)M的軌跡方程是              .

      5、拋物線上的點(diǎn)到直線x-y-2=0的最短距離是_______________。

    〖例題分析〗

      1、以拋物線拱橋跨度為52米,拱頂離水面6.5米,一竹排上有一4米寬6米高的大木箱,問此木排能否安全通過此橋?

     

     

     

     

     

     

     

     

     

    2、拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線經(jīng)過雙曲線的一個(gè)焦點(diǎn),并且這條準(zhǔn)線與雙曲線的實(shí)軸垂直,又拋物線與雙曲線交于點(diǎn)(),求二者的方程.

     

     

     

     

     

     

     

     

     

    3、AB是拋物線y2=4x經(jīng)過焦點(diǎn)F的弦,如果|AB|=6,求AB中點(diǎn)M到y(tǒng)軸的距離.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    〖課堂練習(xí)〗

      1、拋物線y2=2x上點(diǎn)A、B到焦點(diǎn)的距離之和為5,AB中點(diǎn)為

    M,則M點(diǎn)到y(tǒng)軸的距離為……………………………(    )

    (A)5       (B)          (C)2         (D)

      2、一拋物線拱橋,當(dāng)橋頂離水面2米時(shí),水面寬4米,水面下

    降1米,則水面寬為            .

      3、A(3,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),P是拋物線上任意一點(diǎn),當(dāng)|PA|+|PF|最小時(shí),P點(diǎn)的坐標(biāo)為             ;此最小值是              .

    〖課堂小結(jié)〗

        拋物線問題的前提是能快速判斷“型”而給出標(biāo)準(zhǔn)方程;定義是研究拋物線問題的最有力工具,大凡涉及準(zhǔn)線、焦點(diǎn)問題都要向定義靠攏;熟練使用焦半徑公式可以簡(jiǎn)化運(yùn)算.

    〖能力測(cè)試〗                                  姓名                得分        

    1、平面內(nèi)到定點(diǎn)的距離比它到直線距離小1的動(dòng)點(diǎn)軌跡是…………………………………………(   )

    (A)直線           (B)圓              (C)拋物線           (D)拋物線或雙曲線

    2、曲線C1:按向量=(3,-2)平移得曲線C2,則曲線C2的方程是…………(   ) (A)x2=        (B)(x-6)2= -8(y+4) (C)(x-1)2=-8(y-1)  (D)(x-5)2=-8(y+5)

    3、拋物線y=的準(zhǔn)方程為……………………………………………………………………(    )

    (A)x=        (B)y=2               (C)x=                (D)y=4

    4、拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,曲線上的點(diǎn)P(m,-3)到焦點(diǎn)的距離為5,則準(zhǔn)線是…(    )

    (A)y=4             (B)y=-4              (C)y=2                 (D)y=-2

    5、點(diǎn)在原點(diǎn),焦點(diǎn)是曲線于坐標(biāo)軸交點(diǎn)的拋物線方程是……………………………(    )

    (A)y2=-8x         (B)y2=-16x            (C) y2=-8x 或x2=-4y   (D)y2=-8x 或x2=8y

    6、經(jīng)過點(diǎn)P(-2,-4)的拋物線的標(biāo)準(zhǔn)方程為                                          。

    7、已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(1,0)和到直線x=3的距離之和為4,設(shè)P的軌跡為C.

      ⑴求C的方程;

    ⑵過F的直線與曲線C交于A、B兩點(diǎn),求|AB|的最小值.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    直線與拋物線的位置關(guān)系

    〖考試內(nèi)容〗拋物線及其標(biāo)準(zhǔn)方程,焦點(diǎn)、范圍、對(duì)稱性、頂點(diǎn)、離心率、準(zhǔn)線.

    〖復(fù)習(xí)要求〗掌握直線與拋物線位置關(guān)系的判定方法――“△”法;

    掌握弦長(zhǎng)公式;“韋達(dá)定理、設(shè)而不求”的技巧在解題中的使用.

    〖知識(shí)點(diǎn)訓(xùn)練〗

      1、經(jīng)過拋物線y2=4x的焦點(diǎn)垂直于對(duì)稱軸的弦長(zhǎng)為……………………………………………(    )

    (A)0                 (B)1               (C) 2                  (D) 3

      2、過拋物線焦點(diǎn)F的直線與拋物線交于A、B兩點(diǎn), 如果A、B在準(zhǔn)線上的射影為C、D,那么∠CFD=…………………………………………………………………………………………(    )

    (A)45º               (B)60º             (C) 75º                (D) 90º

    3、拋物線y2=4x的焦點(diǎn)被焦點(diǎn)弦分成長(zhǎng)是m和n的兩部分,則m與n的關(guān)系是………………(    )

      (A)m+n=mn       (B)m+n=4       (C)mn=4            (D)無法確定

    4、拋物線與過焦點(diǎn)的直線交于A,B兩點(diǎn),則為………………………………(    )

      (A)             (B)-        (C)3                      (D)`

    〖例題分析〗

    1、求過定點(diǎn)P(0,1)且與拋物線y2=2x只有一個(gè)公共點(diǎn)的直線方程.

     

     

     

     

     

     

     

     

     

    2、拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F是圓x2+y2-4x=0的中心.

      ⑴求拋物線C的方程;

    ⑵過焦點(diǎn)F的直線順次交二曲線于A、B、C、D,求|AB|?|CD|

     

     

     

     

     

     

     

     

     

     

     

     

    3.拋物線過定點(diǎn)A(0,2),且以x軸為準(zhǔn)線.

    (1)    求這拋物線頂點(diǎn)M的軌跡方程

    (2)過點(diǎn)B是否存在一對(duì)互相垂直的直線同時(shí)都與軌跡C有公共點(diǎn)?證明你的結(jié)論.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    〖課堂練習(xí)〗

      1、過拋物線的焦點(diǎn)F作弦MN,以MN為直徑的圓和此拋物線的準(zhǔn)線關(guān)系是………………(    )

    (A)相交           (B)相離           (C) 相切             (D) 位置關(guān)系不確定

      2、AB是拋物線y=x2的一條經(jīng)過焦點(diǎn)的弦,|AB|=4,則AB中點(diǎn)到直線y+1=0的距離為…(    )

    (A)            (B)2               (C)               (D) 3

      3、在拋物線y2=-8x內(nèi)以M(-1,1)為中點(diǎn)的弦所在直線方程是                    .

    〖課堂小結(jié)〗

       解決直線與拋物線位置關(guān)系問題時(shí),對(duì)于消元后的一元二次方程必須討論二次項(xiàng)系數(shù)和“△”;另外,韋達(dá)定理和設(shè)而不求的技巧是必須掌握的.

    〖能力測(cè)試〗                                  姓名                得分        

      1、直線與拋物線有一個(gè)交點(diǎn)是直線與拋物線相切的…………………………………………(     )

    (A)充分不必要條件   (B)必要不充分條件   (C)充要條件        (D) 既不充分也不必要條件

      2、已知點(diǎn)F(,0),直線l:x=-,點(diǎn)B是直線l上的點(diǎn),如果過B垂直于y軸的直線與線段BF的垂直平分線交于點(diǎn)M,則點(diǎn)M的軌跡是……………………………………………(     )

    (A)雙曲線            (B)橢圓             (C)圓             (D) 拋物線

      3、拋物線y=ax2(a>0)

    試題詳情

    桓臺(tái)一中階段性測(cè)試?yán)砜茢?shù)學(xué)試題

    試題詳情

    直線的方程

    〖考綱要求〗理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握由一個(gè)點(diǎn)和斜率導(dǎo)出直線方程的方法;掌握直線方程的點(diǎn)斜式、斜截式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線的方程。

    〖雙基回顧〗

    1、直線的傾斜角:在平面直角坐標(biāo)系中,對(duì)于一條與x軸相交的直線,如果把x軸繞著交點(diǎn)按__________________________________________________________,那么角就叫做直線的傾斜角。規(guī)定:當(dāng)直線和x軸平行或重合時(shí)其傾斜角為:_              __,所以直線的傾斜角的取值范圍是:_______________.

    2、直線的斜率是指:_____________________________________________.

    3、經(jīng)過兩面點(diǎn)P(x1,y1),Q(x2,y2)的直線的斜率公式為:k=_______________.

    4、直線方程的五種形式及其應(yīng)用范圍:

    方程名稱

    方程形式

    應(yīng)用條件

    點(diǎn)斜式

     

     

    斜截式

     

     

    兩點(diǎn)式

     

     

    一般式

     

     

     

    〖課前訓(xùn)練〗

    1、直線9x-4y=36的縱截距為………………………………………………………………………(    )

    (A)9                (B)-9              (C) -4                (D)

    2、直線l1:y=ax+b,l2:y=bx+a(a、b是不等的正數(shù))的圖象應(yīng)該是…………………………(    )

     

     

     

     

  • <abbr id="0asgy"></abbr>
    <option id="0asgy"><dl id="0asgy"></dl></option>
    • (A)

      (B)

      (C)

      (D)

      3、直線經(jīng)過點(diǎn)P(-2,-1)并且在兩坐標(biāo)軸上的截距和為0,則此直線方程為                .

      4、兩點(diǎn)A(x1,y1),B(x2,y2),在方向向量為=(1,k)的直線上且AB=t,則|y1y2|=________(用t,k表示).

      〖典型例題〗

      1、若<<0,則直線y=xcotα的傾斜角是……………………………………………………(    )

      A            (B            (C              (D

      2、下列四個(gè)命題中真命題是…………………………………………………………………………(    )

      (A)經(jīng)過點(diǎn)P(xo,yo)的直線都可以用方程yyo=k(xxo)表示.

      (B)經(jīng)過任意兩不同點(diǎn)P1(x1,y1), P2(x2,y2)的直線都可以用方程(yy1)(x2x1)=(xx1)(y2y1)表示.

      (C)不經(jīng)過原點(diǎn)的直線都可以用方程表示. 

      (D)經(jīng)過定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示.

      5、求將直線xy=2繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后所得直線方程.

       

       

       

       

       

       

      6、求過點(diǎn)P(0,1)的直線,使它夾在兩已知直線l1:2xy-8=0和l2x-3y+10=0間的線段被點(diǎn)P平分。

       

       

       

       

       

       

      7、過點(diǎn)P(2,1)作直線l分別交x、y軸正半軸于A,B兩點(diǎn).

      (1)當(dāng)ΔAOB面積最小時(shí),求直線l的方程;

      (2)當(dāng)|PA|?|PB|取最小值時(shí),求直線l的方程.

       

       

       

       

       

       

       

       

       

       

      〖課堂練習(xí)〗

      1(95年)如圖,直線的斜率分別為k1、、k2、k3,則…………………(    )

      Ak1<k2<k3          Bk3<k1<k2   

      Ck3<k2< k1         Dk1< k3< k2

      2(93年)直線axby=ab(a<0,b<0 )的傾斜角是………………………(    )

      A              (B

      Cπ            (D

      3(93年文)若直線axbyc=0在第一、二、三象限,則…………………………………………(   )。

      (A)ab>0,bc>0     (B)ab>0,bc<0      (C)ab<0,bc>0     (D)ab<0,bc<0

      4(2000年上海春季)若直線的傾斜角為且過點(diǎn)(1,0),則直線的方程為_____________.

      *5、已知直線l過點(diǎn)P(-1,2),且與以A(-2,-3),B(3,0)為端點(diǎn)的線段有公共點(diǎn),則直線l的斜率的值范圍是:___________________________.

      〖能力測(cè)試〗                                       姓名              得分           .

      1、過點(diǎn)(4,0)和點(diǎn)(0,3)的直線的傾斜為………………………………………………………………(    )

      (A)           (B)       (C)       (D)

      2、如果AC<0且BC<0,那么直線Ax+By+C=0不通過的象限是…………………………………(    )

      (A)第一象限           (B)第二象限          (C)第三象限           (D)第四象限

      3、直線2x-3y+6=0繞著它與y軸的交點(diǎn)逆時(shí)針旋轉(zhuǎn)45°的角,則此時(shí)在x軸上的截距是……(    )

      (A)-               (B) -             (C)                (D)-

      4、,則直線xcos+ysin+1=0的傾斜角為…………………………………………(    )

      (A)             (B)                 (C)            (D)

      5、過點(diǎn)(-2,1)在兩條坐標(biāo)軸上的截距絕對(duì)值相等的直線條數(shù)有……………………………(    )

      (A)1                  (B)2                  (C)3                 (D)4

      6、直線xcos+y+m=0的傾斜角范圍是…………………………………………………………(    )

      (A)             (B)    (C)           (D)

      7、經(jīng)過點(diǎn)P(0,-1)并且傾斜角的正弦值為的直線方程為                          .

      9、⑴直線L過點(diǎn)P(2,-3)并且傾斜角比直線y=2x的傾斜角大45º,求直線L的方程.

       

       

       

       

       

      ⑵直線L在x軸上的截距比在y軸上的截距大1并且經(jīng)過點(diǎn)(6,-2),求此直線方程.

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      兩條直線的位置關(guān)系(1)

      〖考綱要求〗掌握兩條直線平行與垂直的條件,能夠根據(jù)方程判定兩條直線的位置關(guān)系,會(huì)求兩條相交直線的夾角和交點(diǎn),掌握點(diǎn)到直線的距離公式.

      〖基本理論〗

        1、兩條直線:l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0的位置關(guān)系:

      ⑴相交

      ⑵平行

      ⑶重合

        2、點(diǎn)P(x0,y0)到直線Ax+By+C=0的

      距離為d=

      3、兩條平行直線:Ax+By+C1=0,Ax+By+C2=0的距離為d=

        4、直線l1l2的角:

          ⑴定義:

      ⑵求法:

        5、直線l1l2的夾角:

      〖知識(shí)點(diǎn)訓(xùn)練〗

       1、過點(diǎn)A(-2,1)與x軸垂直的直線方程是………………………………………………………(    )

      (A)x=-2           (B)y=1              (C)x=1            (D)y=-2

       2、點(diǎn)(4,a)到直線4x-3y=1的距離不大于3,則實(shí)數(shù)a的取值范圍是………………………(    )

      (A)[2,12]          (B)[1,12]          (C)[0,10]         (D)[-1,9]

       3、直線x+y+4=0和直線5x-2y=0相交成的銳角的正切為……………………………………(    )

      (A)              (B)              (C)             (D)

       4、兩條直線3x+2y+m=0與(m2+1)x-3y+2-3m=0 的位置關(guān)系是…………………………(    )

      (A)平行            (B)重合             (C)相交           (D)不能確定

      〖典型例題〗

       1、直線l1:x+my+6=0與l2:(m-2)x+3y+2m=0,則當(dāng)m為何值時(shí):

        ⑴它們相交;⑵它們平行;⑶它們垂直;⑷夾角為

       

       

       

       

       

       2、直線l1、l2的斜率是方程6x2+x-1=0的根,求這兩條直線的夾角.

       

       

       

      3、等腰三角形底邊的方程為x+y-1=0,一腰的方程為x-2y-2=0,點(diǎn)(-2,0)在另一腰上,求此腰的方程.

       

       

       

       

       

       

       

       

       

      4、如果三條直線l1:4x+y-4=0、l2:mx+y=0、l3:2x-3my-4=0不能圍成三角形,求實(shí)數(shù)m的值.

       

       

       

       

       

       

       

       

       

       

      〖課堂練習(xí)〗

      1、已知直線方程::2x-4y+7=0;:x-ay+5=0。且,則a =         。

      2、已知直線:2x-4y+7=0,則過點(diǎn)A(3,7)且與直線平行的直線的方程是           

      3、已知直線:2x-4y+7=0,則過點(diǎn)A(3,7)且與直線垂直的直線的方程是            。

      4、如果直線ax+2y+1=0與直線x+y-2=0垂直,那么a=……………………………………(    )

      (A)1             (B) -            (C)            (D)-2

      5、點(diǎn)(0,5)到直線y=2x的距離是………………………………………………………………(    )

      (A)            (B)             (C)              (D)

      6、兩直線2x-y+k = 0 與4x-2y+1 = 0的位置關(guān)系為…………………………………………(   )

      (A)平行          (B)垂直             (C)相交但不垂直    (D)平行或重合

      8、已知直線2x+y-2 =0和mx-y+1 = 0的夾角為450,則m的值為            .

       

       

       

       

      〖能力測(cè)試〗                                       姓名               得分    

      1、如果直線mx+y-n=0與x+my-1=0平行,則有………………………………………………(    )

      (A)m=1                                 (B)m=±1          

      (C)m=1且n≠-1                        (D)m=-1且n≠1或者m=1且n≠-1

      2、一直線l繞其上一點(diǎn)P逆時(shí)針旋轉(zhuǎn)15º后得到直線x-y-=0,再逆時(shí)針旋轉(zhuǎn)75º后得到直線x+y-1=0,則l的方程為………………………………………………………………………(    )

      (A)x-y-1=0       (B) x+y-1=0        (C) x+y-=0   (D) x-y+=0

      *3、l1:y=mx,l2:y=nx,設(shè)l1的傾斜角是l2傾斜角的2倍,l1的斜率是l2斜率的4倍,并且l1不平

      行于x軸,那么mn=………………………………………………………………………………(    )

      (A)            (B)2                 (C)-3                (D) 1

      4、,則兩直線的關(guān)系是(    )

      (A)平行            (B)垂直              (C)平行或者垂直      (D)相交但是不一定垂直

      5、直線l1:2x-3y+1=0與l2:x-3=0的夾角(區(qū)別于到角)是……………………………………(    )

      (A)-arctan     (B)arctan            (C)-arctan        (D)+ arctan

      6、如果直線ax+2y+1=0、x+y-2=0以及x、y軸圍成的四邊形有外接圓,那么a=……………(    )

      (A)1              (B)-                (C)             (D)-2

      7、a=0是直線x+2ay-1=0與(3a-1)x-ay-1=0平行的…………………………………………(    )

      (A)充分不必要條件    (B) 必要不充分條件     (C)充要條件     (D)既不充分也不必要條件

      9、如果直線ax+4y-2=0與直線2x-5y+C=0垂直相交于點(diǎn)A(1,m),求a、m、C之值.

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      兩條直線的位置關(guān)系(2)

      〖考綱要求〗掌握兩條直線平行與垂直的條件,能夠根據(jù)方程判定兩條直線的位置關(guān)系,會(huì)求兩條相交直線的夾角和交點(diǎn),掌握點(diǎn)到直線的距離公式,掌握對(duì)稱問題的基本處理方法.

      〖教學(xué)目的〗運(yùn)用兩條直線位置關(guān)系理論解決實(shí)際問題

      〖課前練習(xí)〗

      1、以A(1,3)、B(-5,1)為端點(diǎn)的線段的垂直平分線方程是…………………………………(    )

      (A)3x-y+8=0        (B)3x+y+4=0         (C)2x-y-6=0         (D)2x+y+2=0

      2、直線l1經(jīng)過P(-2,-2),l2經(jīng)過點(diǎn)Q(1,3),現(xiàn)l1l2分別繞P、Q旋轉(zhuǎn)但是保持l1l2,則l1l2的距離d∈            .

      3、如果直線y=ax+2與直線y=3x-b關(guān)于直線y=x對(duì)稱,則有…………………………………(    )

      (A)a=,b=6         (B) a=,b=-6        (C)a=3,b=-2        (D)a=3,b=6

      〖典型例題〗

      1、求證:直線(m+2)x-(1+m)y-(6+4m)=0與點(diǎn)P(4,-1)的距離不等于3.

       

       

       

       

       

       

       

      2、求與直線3x+4y-8=0、6x+8y+11=0距離相等的直線方程.

       

       

       

       

       

       

       

      3、△ABC中,A(3,-1),AB邊上的中線CM所在直線方程為:6x+10y-59=0,∠B的平分線方程BT為:x-4y+10=0,求直線BC的方程.

       

       

       

       

       

       

       

       

       

       

       

      4、一條直線ll1:2x+y-6=0與l2:4x+2y-5=0所截得的線段長(zhǎng)為,求此直線l的方程.

       

       

       

       

       

       

       

       

       

      5、⑴已知A(2,0),B(-2,-2),在直線L:x+y-3 = 0上求一點(diǎn)P使|PA| + |PB| 最小.

       

       

       

       

       

       

       

       

      ⑵直線l:y=2x+3,A(3,4),B(11,0),在l上找一點(diǎn)P,使P到A、B距離之差最大.

       

       

       

       

       

       

       

       

       

       

      〖課堂訓(xùn)練〗

        1、點(diǎn)(3,1)關(guān)于直線y+x-1=0的對(duì)稱點(diǎn)坐標(biāo)為………………………………………………(    )

      (A)(1,3)    (B)(-1,-3)     (C)(0,-2)     (D)(-2,0)

      2、三角形ABC中,A(3,-1),∠B、∠C的平分線方程分別為x=0與y=x,那么直線BC方程為…………………………………………………………………………………………………(    )

      (A)y=2x+5     (B)y=2x+3      (C)y=3x+5      (D)

      3、一條光線自點(diǎn)A(-4,2)射入,遇到x軸被反射后遇到y(tǒng)軸又被反射,這時(shí)的光線經(jīng)過點(diǎn)B(-1,3),求兩個(gè)反射點(diǎn)間的光線長(zhǎng)度及兩次反射光線方程.

       

       

       

       

      〖能力測(cè)試〗                                       姓名               得分     .

      1、光線從點(diǎn)P(2,3)射到直線y=-x-1上,反射后經(jīng)過Q(1,1),則反射光線方程為…(    )

      (A)x-y+1=0       (B)4x-5y+31=0      (C)4x-5y+16=0     (D)4x-5y+1=0

      2、點(diǎn)A(1,3),B(5,-2),點(diǎn)P在x軸上使|AP|-|BP|最大,則P的坐標(biāo)為………………(    )

      (A)(4,0)            (B)(13,0)             (C)(5,0)              (D)(1,0)

      4、直線l:y=3x-4關(guān)于點(diǎn)P(2,-1)對(duì)稱的直線方程為…………………………………………(    )

      (A)y=3x-7           (B)y=3x-10            (C)y=3x-18          (D)y=3x+4

       

      5、點(diǎn)A(-6,0)、B(0,8),點(diǎn)P在直線AB上,AP∶AB=3∶5,求點(diǎn)P到直線15x+20y-16=0的距離.

       

       

       

       

       

       

      6、三角形ABC的頂點(diǎn)A(2,-4),∠B、∠C的平分線方程分別為:x+y-2=0、x-3y-6=0,求此三角形另外兩個(gè)頂點(diǎn)B、C的坐標(biāo).

       

       

       

       

       

       

       

      7、知三角形ABC的一條內(nèi)角平分線CD的方程為2x+y-1 = 0,兩個(gè)頂點(diǎn)A(1,2),B(-1,-1),求第三個(gè)頂點(diǎn)C的坐標(biāo).

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      (簡(jiǎn)單的)線性規(guī)劃

      〖考綱要求〗

      使學(xué)生了解二元一次不等式表示平面區(qū)域;了解線性規(guī)劃的意義以及約束條件、目標(biāo)函數(shù)、可行解、可得域、最優(yōu)解等基本概念;了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問題.

      〖雙基回顧〗

      1、如圖所示,不等式組表示的平面區(qū)域是…………………………………………(    )

       

       

       

       

       

       

       

      2、不等式表示的平面區(qū)域包含點(diǎn)和點(diǎn)的取值范圍是……(    )                            

      (A)      (B)     (C)      (D)

      〖典型例題〗

      1、Z=0.9x+y,式中變量x,y滿足下列條件求Z的最小值。

       

       

       

       

       

       

       

      2、已知x,y滿足條件

      ⑴找出x,y均為整數(shù)的可行解;      ⑵求目標(biāo)函數(shù)Z=x+3y的最大值;

      ⑶若x,y均為整數(shù),求目標(biāo)函數(shù)Z=x+3y的最大值。

       

       

       

       

       

       

      3、甲、乙、丙三種食物維生素A、B含量及成本如下表:

      項(xiàng)  目

      維生素A(單位/千克)

      600

      700

      400

      維生素B(單位/千克)

      800

      400

      500

      成本(元/千克)

      11

      9

      4

             某食物營養(yǎng)研究所想用x千克甲種食物、y千克乙種食物、z千克丙種食物配成100千克混合物,并使混合物至少含有56000單位維生素A和63000單位維生素B.試用x、y表示混合物的成本M(元);并確定x、yz的值,使成本最低.

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      4、已知6枝玫瑰與3枝康乃磬的價(jià)格之和大于24元,4枝玫瑰與5枝康乃磬的價(jià)格之和小于22元,那么2枝玫瑰的價(jià)格與3枝康乃磬的價(jià)格比較的結(jié)果是…………………………………(    )
        (A)2枝玫瑰價(jià)格高        (B) 3枝康乃磬價(jià)格高    (C) 價(jià)格相同      (D) 不確定

       

       

       

       

       

       

       

       

       

       

       

       

      〖能力測(cè)試〗

      1、A(2,4),B(4,3),C(1,1),點(diǎn)(x,y)在△ABC三邊所圍成的區(qū)域內(nèi)(包括邊界),則Z=2x+y的最大值、最小值分別為…………………………………………………………………………( 。

      (A)8,2   (B)8,3   (C)11,2    (D)11,3

      2、如圖所示,不等式(x?2y+1)(x+y?3)<0表示的平面區(qū)域是………………………………………(    )

       

       

       

       

       

       

       

       

      3、已知約束條件,目標(biāo)函數(shù)z=3x+y,某人求得x=, y=時(shí),zmax=, 這顯然不合要求,正確答案應(yīng)為x=         ; y=          ; zmax=          .

      4、三角形三邊所在直線方程分別為用不等式組表示三角形內(nèi)部區(qū)域(包含邊界)為                      .

      5、下表給出了甲、乙、丙三種食物的維生素A,B的含量和成本,

       

      A(單位?kg?1)

      400

      600

      400

      B(單位?kg?1)

      800

      200

      400

      成本(元)

      7

      6

      5

      營養(yǎng)師想購買這三種食物共10kg,使之所含的維生素A不少于4400單位,維生素B不少于4800單位,(1) 試用所購買的甲、乙兩種食物的量表示總成本;(2) 甲、乙、丙三種食物各購買多少時(shí)成本最低?最低成本是多少?

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      圓的方程

      〖考綱要求〗掌握?qǐng)A的標(biāo)準(zhǔn)方程及其幾何性質(zhì),會(huì)根據(jù)所給條件畫圓,了解圓的實(shí)際應(yīng)用.

      〖教學(xué)重點(diǎn)〗圓方程的求法.

      〖雙基回顧〗

        1、圓的定義:

        2、圓的方程:

      ⑴標(biāo)準(zhǔn)式方程――方程形式是                        ;圓心           ;半徑     .

      ⑵一般式方程――方程形式是                        ;滿足的條件是              .

                      對(duì)應(yīng)的圓心是             ;半徑是            .

      ⑶直徑式方程――如果A(x1,y1)、B(x2,y2)是圓C的直徑端點(diǎn),則方程是                 .

        3、點(diǎn)P(x0,y0)在圓x2+y2=r2上,則過P的切線方程是:                              .

      〖知識(shí)點(diǎn)訓(xùn)練〗

        1、圓(x+1)2+(y-2)2=4的圓心、半徑是…………………………………………………………(    )

      (A)(1,-2),4             (B)(1,-2),2          (C)(-1,2),4            (D)(-1,2),2

      2、方程x2+y2+2kx+4y+3k+8=0表示圓的充要條件是………………………………………(    )

      (A)k>4或者k<-1     (B)-1<k<4         (C)k=4或者k=-1       (D)以上答案都不對(duì)

        3、圓x2+y2+Dx+Ey+F=0與x軸切于原點(diǎn),則有………………………………………………(    )

      (A)F=0,DE≠0         (B)E2+F2=0,D≠0    (C)D2+F2=0,E≠0     (D)D2+E2=0,F(xiàn)≠0

        4、以(0,0)、(6,-8)為直徑端點(diǎn)的圓方程是                    .

      〖例題分析〗

        1、求滿足下列條件的圓方程:

      ⑴過三點(diǎn)A(2,2)、B(5,3)、C(3,-1);

       

       

       

       

       

      (2)過點(diǎn)P(2,-1),圓心在直線2x+y=0上,與直線x-y-1=0相切.

       

       

       

       

        *2、已知圓C滿足以下三個(gè)條件,求圓C的方程(1997年高考題)

      ⑴截y軸所得的弦長(zhǎng)為2;⑵被x軸分成的兩段弧長(zhǎng)之比為1:3;

      ⑶圓心到直線l:x-2y=0的距離最小.

      .

       

       

       

       

       

       

      3、一曲線是與定點(diǎn)O(0,0),A(3,0)距離的比是的點(diǎn)的軌跡,求此曲線的軌跡方程.

       

       

       

       

       

       

       

       

       

      4、已知圓和定點(diǎn)A(2,0),B為圓上一動(dòng)點(diǎn),△ABC是正三角形(A、B、C為順時(shí)針順序),求頂點(diǎn)C的軌跡;點(diǎn)B在上半圓上運(yùn)動(dòng)到什么位置時(shí),四邊形OACB面積最大?

       

       

       

       

       

       

       

      *5、如果經(jīng)過A(0,1)、B(4,m)并且與x軸相切的圓有且只有一個(gè),求實(shí)數(shù)m的值.

       

       

       

       

       

       

       

       

       

       

      〖課堂練習(xí)〗

        1、方程表示的曲線是………………………………………………………(    )

      (A)在x軸上方的圓    (B)在y軸右方的圓   (C)x軸下方的半圓   (D)x軸上方的半圓

        2、方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示圓,則實(shí)數(shù)m的取值范圍是………(    )

      (A)-<m<1       (B)-1<m<      (C)m<-或m>1  (D)m<-1或m>

        3、經(jīng)過三點(diǎn)A(0,0)、B(1,0)、C(2,1)的圓的方程為…………………………………………(     )

      (A)x2+y2+x-3y-2=0                     (B) x2+y2+3x+y-2=0   

      (C) x2+y2+x+3y=0                       (D) x2+y2-x-3y=0

      4、圓相交于A、B兩點(diǎn),則直線AB的方程是        .

      〖能力測(cè)試〗                                  姓名                得分        

      1、方程|x|-1=表示的曲線是……………………………………………………………(    )

      (A)一條直線        (B)兩條射線        (C)兩個(gè)圓         (D)兩個(gè)半圓

        2、方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)表示的曲線關(guān)于直線x+y=0對(duì)稱,則有……(    )

      (A)D+E=0         (B)D+F=0          (C)E+F=0        (D)D+E+F=0

        3、圓x2+y2-2x=0與圓x2+y2+4y=0的位置關(guān)系是……………………………………………(    )

      (A)相離            (B)外切            (C)相交           (D)內(nèi)切

        4、過點(diǎn)A(-2,0),圓心在(3,-2)的圓的方程為                              .

      5、過圓上一點(diǎn)的切線方程為____                       ______.

        6、圓心在原點(diǎn),在直線3x+4y+15=0上截得的弦長(zhǎng)為8的圓的方程為                .

      7、方程表示一個(gè)圓,則實(shí)數(shù)的取值范圍是                   .

        8、一個(gè)圓經(jīng)過點(diǎn)A(5,0)與B(-2,1),圓心在直線x-3y-10=上,求此圓的方程.

       

       

       

       

       

       

       

        9、求與兩平行線:x+3y-5=0,x+3y-3=0相切,并且圓心在直線2x+y+3=0的圓的方程.

       

       

       

       

       

       

       

       

       

      10、PQ是過點(diǎn)A(3,0)所作的圓C:x2+y2+6x=0的弦,設(shè)CH⊥PQ于H.求點(diǎn)H的軌跡方程

       

       

       

       

       

       

       

       

       

       

       

      直線與圓的位置關(guān)系

      〖考點(diǎn)陳列〗圓的標(biāo)準(zhǔn)方程和一般方程

      〖考綱要求〗掌握?qǐng)A的標(biāo)準(zhǔn)方程及其幾何性質(zhì).

      〖教學(xué)重點(diǎn)〗掌握直線與圓的位置關(guān)系及其判斷方法;圓方程的求法.

      〖雙基回顧〗

      直線與圓的位置關(guān)系

      幾何解釋

      代數(shù)解釋

      直線與圓相切

      d=r

      △=0

      直線與圓相交

      d<r

      △>0

      直線與圓相離

      d>r

      △<0

      〖知識(shí)點(diǎn)訓(xùn)練〗

        1、A,B是直線l:3x+4y-2=0與⊙C:x2+y2+4y=0的兩個(gè)交點(diǎn),則AB的中垂線方程為…(    )

      (A)4x+3y+8=0       (B)4x+3y+2=0        (C)4x-3y-6=0       (D)4x-3y-2=0

        2、直線3x+4y+12=0與⊙C:(x-1)2+(y-1)2=9的位置關(guān)系是……………………………(    )

      (A)相交并且過圓心    (B)相交不過圓心       (C)相切              (D)相離

      3、圓截直線所得弦長(zhǎng)等于……………………………(    )

        4、過點(diǎn)A(-1,-1)作圓x2+y試題詳情

      2009屆高考地理復(fù)習(xí)《人口、資源、環(huán)境與可持續(xù)發(fā)展》測(cè)試題

      試題詳情

      省港中、省揚(yáng)中高一年級(jí)期中聯(lián)考試卷

                         數(shù)學(xué)試卷  命題人:呂小平  楊恒運(yùn) 2009.4.26

      試題詳情

      江蘇省邗江中學(xué)(集團(tuán))2008―2009學(xué)年度第二學(xué)期

        高二數(shù)學(xué)期中試卷(B)      

      命題人:魏躍兵     王  祥

      試題詳情


      同步練習(xí)冊(cè)答案