17.袋子A和B中裝有若干個均勻的紅球和白球.從A中摸出一個紅球的概率是.從B中摸出一個紅球的概率為p. (Ⅰ) 從A中有放回地摸球.每次摸出一個.共摸5次.(i)恰好有3次摸到紅球的概率,(ii)第一次.第三次.第五次摸到紅球的概率. (Ⅱ) 若A.B兩個袋子中的球數(shù)之比為12.將A.B中的球裝在一起后.從中摸出一個紅球的概率是.求p的值. 解: (ii) (iii)設袋子A中有m個球,則袋子B中有2m個球, 由,得p=. 查看更多

 

題目列表(包括答案和解析)

袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是
1
3
,從B中摸出一個紅球的概率為p.
(Ⅰ)從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止.
(i)求恰好摸5次停止的概率;
(ii)記5次之內(nèi)(含5次)摸到紅球的次數(shù)為ξ,求隨機變量ξ的分布率及數(shù)學期望Eξ.
(Ⅱ)若A、B兩個袋子中的球數(shù)之比為12,將A、B中的球裝在一起后,從中摸出一個紅球的概率是
2
5
,求p的值.

查看答案和解析>>

袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是
1
3
,從B中摸出一個紅球的概率為P.
(1)從A中有放回地摸球,每次摸出一個,共摸4次.
①恰好有2次摸到紅球的概率;②第一次、第三次摸到紅球的概率.
(2)若A、B兩個袋子中的球數(shù)之比為4,將A、B中的球裝在一起后,從中摸出一個紅球的概率是
2
5
,求P的值.

查看答案和解析>>

袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是
1
3
,從B中摸出一個紅球的概率是
2
3
.現(xiàn)從兩個袋子中有放回的摸球•
(I)從A中摸球,每次摸出一個,共摸5次.求:
(i)恰好有3次摸到紅球的概率;
(ii)設摸得紅球的次數(shù)為隨機變量X,求X的期望;
(Ⅱ)從A中摸出一個球,若是白球則繼續(xù)在袋子A中摸球,若是紅球則在袋子B中摸球,若從袋子B中摸出的是白球則繼續(xù)在袋子B中摸球,若是紅球則在袋子A中摸球,如此反復摸球3次,計摸出的紅球的次數(shù)為Y,求Y的分布列以及隨機變量Y的期望.

查看答案和解析>>

袋子A和B中裝有若干個均勻的紅球和白球.從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為P.

(1)從A中有放回地摸球,每次摸出一個,共摸5次.

求:①恰好有3次摸到紅球的概率;

②第一次、第三次、第五次均摸到紅球的概率.

(2)若A、B兩個袋子中的球數(shù)之比為1∶2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求P的值.

查看答案和解析>>

袋子AB中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p

  (Ⅰ) 從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止.

(i)求恰好摸5次停止的概率;

(ii)記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機變量的分布率及數(shù)學期望E

   (Ⅱ) 若AB兩個袋子中的球數(shù)之比為12,將AB中的球裝在一起后,從中摸出一個紅球的概率是,求p的值.

查看答案和解析>>


同步練習冊答案