題目列表(包括答案和解析)
6.一個等差數(shù)列共有10項(xiàng),其中偶數(shù)項(xiàng)的和為15,則這個數(shù)列的第6項(xiàng)是 ( )
A.3 B.4 C.5 D.6
5.在各項(xiàng)都為正數(shù)的等比數(shù)列中,a1=3,前三項(xiàng)和為21,則a3 + a4 + a5 = ( )
A.33 B.72 C.84 D.189
4.在△ABC中,,則A等于 ( )
A.60° B.45° C.120° D.30°
3.滿足的△ABC的個數(shù)為m,則am的值為 ( )
A.4 B.2 C.1 D.不確定
2.下列不等式的解集是R的為 ( )
A. B. C. D.
1.若,則下列不等式中不成立的是 ( )
A. B. C. D.
21. (本小題滿分15分)已知定點(diǎn)A(-1,0)和B(1,0),P是圓(x-3)2+(y-4)2=4上的一動點(diǎn),求的最大值和最小值.
分析:因?yàn)镺為AB的中點(diǎn),所以故可利用向量把問題轉(zhuǎn)化為求向量的最值。
解:設(shè)已知圓的圓心為C,由已知可得: …2分
又由中點(diǎn)公式得 …4分
所以
=
=
= …8分
又因?yàn)?sub> 點(diǎn)P在圓(x-3)2+(y-4)2=4上,
所以 且 …10分
所以 …12分
即 故 …14分
所以的最大值為100,最小值為20. …15分
20、解:⑴,
當(dāng)(k∈Z)時,有最大值, …3分
即(k∈Z)時,有最大值為3+a,∴3+a=2,解得;…6分
⑵令, …9分
解得(k∈Z) …12分
∴函數(shù)的單調(diào)遞增區(qū)間(k∈Z). …14分
19、解:(I)由cos2α=,得1-2sin2α=. ……2分
所以sin2α=,又α∈,所以sinα=. ……3分
因?yàn)閏os2α=1-sin2α,所以cos2α=1-=.
又α∈,所以cosα= ……5分
所以sinα+cosα=+=. ……6分
(Ⅱ)因?yàn)?i>α∈,所以2α∈,
由已知cos2α=,所以sin2α== = ……7分
由5sin(2α+β)=sinβ,得5(sin2αcosβ+cos2αsinβ)=sinβ. ……9分
所以5(cosβ+sinβ)=sinβ,即3cosβ=-3sinβ,所以tanβ=-1. ……11分
因?yàn)?i>β∈, 所以β=. ……13分
18、解:⑴; …6分
⑵ …12分
解:⑴; …6分
⑵ …12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com