解法一:z2+z=(cosθ+isinθ)2+cosθ+isinθ=cos2θ+isin2θ+cosθ+isinθ 查看更多

 

題目列表(包括答案和解析)

(2007•靜安區(qū)一模)設(shè)復(fù)數(shù)z=2+cosθ+isinθ,θ∈[0,π],ω=1+i,求|z-ω|的取值范圍.

查看答案和解析>>

設(shè)0<θ<2π,復(fù)數(shù)z=1-cosθ+isinθ,u=a2+ai,且zu是純虛數(shù),a是實(shí)數(shù),記ω=z2+u2+2zu,試問ω可能是正數(shù)嗎?為什么?

查看答案和解析>>

(本題14分)閱讀:設(shè)Z點(diǎn)的坐標(biāo)(a, b),r=||,θ是以x軸的非負(fù)半軸為始邊、以OZ所在的射線為終邊的角,復(fù)數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個(gè)表達(dá)式叫做復(fù)數(shù)z的三角形式,其中,r叫做復(fù)數(shù)z的模,當(dāng)r≠0時(shí),θ叫做復(fù)數(shù)z的幅角,復(fù)數(shù)0的幅角是任意的,當(dāng)0≤θ<2π時(shí),θ叫做復(fù)數(shù)z的幅角主值,記作argz

根據(jù)上面所給出的概念,請解決以下問題:

(1)設(shè)z=a+bi =r(cosθ+isinθ) (a、bÎR,r≥0),請寫出復(fù)數(shù)的三角形式與代數(shù)形式相互之間的轉(zhuǎn)換關(guān)系式;

(2)設(shè)z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則,請寫出三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則.(結(jié)論不需要證明)

查看答案和解析>>

設(shè)復(fù)數(shù)z1=2sinθ+icosθ(<θ<
π
2
)
在復(fù)平面上對應(yīng)向量
oz1
,將
oz1
按順時(shí)針方向旋轉(zhuǎn)
3
4
π
后得到向量
oz2
,
oz2
對應(yīng)的復(fù)數(shù)為z2=r(cos∅+isin∅),則tg∅( 。
A、+12tgθ-1
B、
2tgθ-1
2tgθ+1
C、
1
2tgθ+1
D、
1
2tgθ-1

查看答案和解析>>

設(shè)復(fù)數(shù)z1=2sinθ+cosθ(
π
4
<θ<
π
2
)在復(fù)平面上對應(yīng)向量
OZ1
,將
OZ1
按順時(shí)針方向旋轉(zhuǎn)
4
后得到向量
OZ2
,
OZ2
對應(yīng)的復(fù)數(shù)為z2=r(cosφ+isinφ),則tanφ=
 

查看答案和解析>>


同步練習(xí)冊答案