題目列表(包括答案和解析)
s5-s3 |
2T |
s5-s3 |
2T |
1 |
2 |
s5-s3 |
2T |
1 |
2 |
s2 |
2T |
1 |
2 |
s5-s3 |
2T |
1 |
2 |
s2 |
2T |
(1) .某同學在測定勻變速直線運動的加速度時,得到了幾條較為理想的紙帶,已知在每條紙帶每5個計時點取好一個計數(shù)點,兩個計數(shù)點之間的時間間隔為0.1s,依打點時間順序編號為0、1、2、3、4、5,由于不小心,紙帶被撕斷了,如下圖所示.請根據(jù)給出的A、B、C、D四段紙帶回答(計算結果保留兩位有效數(shù)字):
①在B、C、D三段紙帶中選出從紙帶A上撕下的那段應是______.
②打A紙帶時,物體的加速度大小是___________.
③點1的速度大小是_____________.
(2).關于打點計時器的使用,下列說法中正確的是( ).
(A)打點計時器應用低壓交流電源,交流電頻率為50Hz
(B)紙帶穿過限位孔,并必須把紙帶壓在復寫紙的上面
(C)要先通電,后釋放紙帶,紙帶通過后立即切斷電源
(D)為減小摩擦,每次測量應先將紙帶理順
(3) .一個實驗小組在“探究彈力和彈簧伸長的關系”的實驗中,使用兩條不同的輕質彈簧a和b,得到彈力與彈簧長度的圖象如圖所示。下列表述正確的是( )
A.a(chǎn)的原長比b的長
B.a(chǎn)的勁度系數(shù)比b的大
C.a(chǎn)的勁度系數(shù)比b的小
D.測得的彈力與彈簧的長度成正比
(4).某同學做“驗證力的平行四邊形定則”實驗時,主要步驟是:
A.在桌上放一塊方木板,在方木板上鋪一張白紙,用圖釘把白紙釘在方木板上
B.用圖釘把橡皮條的一端固定在板上的A點,在橡皮條的另一端拴上兩條細繩,細繩的另一端系著繩套
C.用兩個彈簧秤分別鉤住繩套,互成角度地拉橡皮條,使橡皮條伸長,結點到達某一位置O.記錄下O點的位置,讀出兩個彈簧秤的示數(shù)
D.按選好的標度,用鉛筆和刻度尺作出兩只彈簧秤的拉力F1和F2的圖示,并用平行四邊形定則求出合力F
E.只用一只彈簧秤,通過細繩套拉橡皮條使其伸長,讀出彈簧秤的示數(shù),記下細繩的方向,按同一標度作出這個力的圖示
F.比較力和F的大小和方向,看它們是否相同,得出結論。
上述步驟中:①有重要遺漏的步驟的序號是 和 ;
②遺漏的內容分別是 和 .
(1) .某同學在測定勻變速直線運動的加速度時,得到了幾條較為理想的紙帶,已知在每條紙帶每5個計時點取好一個計數(shù)點,兩個計數(shù)點之間的時間間隔為0.1s,依打點時間順序編號為0、1、2、3、4、5,由于不小心,紙帶被撕斷了,如下圖所示.請根據(jù)給出的A、B、C、D四段紙帶回答(計算結果保留兩位有效數(shù)字):
①在B、C、D三段紙帶中選出從紙帶A上撕下的那段應是______.
②打A紙帶時,物體的加速度大小是___________.
③點1的速度大小是_____________.
(2).關于打點計時器的使用,下列說法中正確的是( ).
(A)打點計時器應用低壓交流電源,交流電頻率為50Hz
(B)紙帶穿過限位孔,并必須把紙帶壓在復寫紙的上面
(C)要先通電,后釋放紙帶,紙帶通過后立即切斷電源
(D)為減小摩擦,每次測量應先將紙帶理順
(3) .一個實驗小組在“探究彈力和彈簧伸長的關系”的實驗中,使用兩條不同的輕質彈簧a和b,得到彈力與彈簧長度的圖象如圖所示。下列表述正確的是( )
A.a(chǎn)的原長比b的長
B.a(chǎn)的勁度系數(shù)比b的大
C.a(chǎn)的勁度系數(shù)比b的小
D.測得的彈力與彈簧的長度成正比
(4).某同學做“驗證力的平行四邊形定則”實驗時,主要步驟是:
A.在桌上放一塊方木板,在方木板上鋪一張白紙,用圖釘把白紙釘在方木板上
B.用圖釘把橡皮條的一端固定在板上的A點,在橡皮條的另一端拴上兩條細繩,細繩的另一端系著繩套
C.用兩個彈簧秤分別鉤住繩套,互成角度地拉橡皮條,使橡皮條伸長,結點到達某一位置O.記錄下O點的位置,讀出兩個彈簧秤的示數(shù)
D.按選好的標度,用鉛筆和刻度尺作出兩只彈簧秤的拉力F1和F2的圖示,并用平行四邊形定則求出合力F
E.只用一只彈簧秤,通過細繩套拉橡皮條使其伸長,讀出彈簧秤的示數(shù),記下細繩的方向,按同一標度作出這個力的圖示
F.比較力和F的大小和方向,看它們是否相同,得出結論。
上述步驟中:①有重要遺漏的步驟的序號是 和 ;
②遺漏的內容分別是 和 .
第六部分 振動和波
第一講 基本知識介紹
《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。
一、簡諧運動
1、簡諧運動定義:= -k ①
凡是所受合力和位移滿足①式的質點,均可稱之為諧振子,如彈簧振子、小角度單擺等。
諧振子的加速度:= -
2、簡諧運動的方程
回避高等數(shù)學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。
依據(jù):x = -mω2Acosθ= -mω2
對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:
mω2 = k
這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規(guī)律。從圖1不難得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相關名詞:(ωt +φ)稱相位,φ稱初相。
運動學參量的相互關系:= -ω2
A =
tgφ= -
3、簡諧運動的合成
a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同頻率振動合成。當質點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經(jīng)構成了質點在二維空間運動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為
+-2cos(φ2-φ1) = sin2(φ2-φ1)
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;
當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;
當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。
c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。
4、簡諧運動的周期
由②式得:ω= ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以
T = 2π ⑤
5、簡諧運動的能量
一個做簡諧運動的振子的能量由動能和勢能構成,即
= mv2 + kx2 = kA2
注意:振子的勢能是由(回復力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。
6、阻尼振動、受迫振動和共振
和高考要求基本相同。
二、機械波
1、波的產(chǎn)生和傳播
產(chǎn)生的過程和條件;傳播的性質,相關參量(決定參量的物理因素)
2、機械波的描述
a、波動圖象。和振動圖象的聯(lián)系
b、波動方程
如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質點的振動方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕
這個方程展示的是一個復變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。
3、波的干涉
a、波的疊加。幾列波在同一介質種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。
b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。
我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。
當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 = ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有
r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;
r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。
4、波的反射、折射和衍射
知識點和高考要求相同。
5、多普勒效應
當波源或者接受者相對與波的傳播介質運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質的傳播速度v是恒定不變的)——
a、只有接收者相對介質運動(如圖3所示)
設接收者以速度v1正對靜止的波源運動。
如果接收者靜止在A點,他單位時間接收的波的個數(shù)為f ,
當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、
在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波
n = = =
顯然,在單位時間內,接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f1 。即
f1 = f
顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。
b、只有波源相對介質運動(如圖4所示)
設波源以速度v2正對靜止的接收者運動。
如果波源S不動,在單位時間內,接收者在A點應接收f個波,故S到A的距離:= fλ
在單位時間內,S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長
λ′= = = =
而每個波在介質中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>
f2 = = f
當v2背離接收者,或有一定夾角的討論,類似a情形。
c、當接收者和波源均相對傳播介質運動
當接收者正對波源以速度v1(相對介質速度)運動,波源也正對接收者以速度v2(相對介質速度)運動,我們的討論可以在b情形的過程上延續(xù)…
f3 = f2 = f
關于速度方向改變的問題,討論類似a情形。
6、聲波
a、樂音和噪音
b、聲音的三要素:音調、響度和音品
c、聲音的共鳴
第二講 重要模型與專題
一、簡諧運動的證明與周期計算
物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。
模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數(shù)k就有了,求周期就是順理成章的事。
本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力
ΣF = ρg2xS = x
由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。
周期T = 2π= 2π
答:汞柱的周期為2π 。
學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉動,在滾輪上覆蓋一塊均質的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。
思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…
答案:木板運動周期為2π 。
鞏固應用:如圖7所示,三根長度均為L = 2.00m地質量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉軸轉動。桿AB是一導軌,一電動松鼠可在導軌上運動,F(xiàn)觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。
解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質量為m ,即:
N = mg ①
再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:
MN = Mf
現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:
N·x = f·Lsin60° ②
解①②兩式可得:f = x ,且f的方向水平向左。
根據(jù)牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——
= -k
其中k = ,對于這個系統(tǒng)而言,k是固定不變的。
顯然這就是簡諧運動的定義式。
答案:松鼠做簡諧運動。
評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。
二、典型的簡諧運動
1、彈簧振子
物理情形:如圖8所示,用彈性系數(shù)為k的輕質彈簧連著一個質量為m的小球,置于傾角為θ
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com