(2)若.問是否存在正實數(shù)成立? 若存在.求出a的范圍,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

已知實數(shù)x,y滿足
x+3y-3n-1≤0
2x-y+n-2≤0
,其中n∈N*,目標函數(shù)z=x+y的最大值記為an,又數(shù)列{bn}滿足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
n-1+(
9
10
n-2+…+
9
10
+1
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于{cn}中任意一項cn,都有cn≤ck成立?證明你的結論.

查看答案和解析>>

 

已知實數(shù)滿足  其中,目標函數(shù)的最大值記為,又數(shù)列滿足:    

(1)求數(shù)列的通項公式;

(2)若,試問數(shù)列中,是否存在正整數(shù),使得對于中任意一項,都有成立?證明你的結論

 

 

 

 

 

 

 

查看答案和解析>>

設數(shù)列的各項均為正實數(shù),,若數(shù)列滿足,,其中為正常數(shù),且.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使得當時,恒成立?若存在,求出使結論成立的的取值范圍和相應的的最小值;若不存在,請說明理由;
(3)若,設數(shù)列對任意的,都有成立,問數(shù)列是不是等比數(shù)列?若是,請求出其通項公式;若不是,請說明理由.

查看答案和解析>>

設數(shù)列的各項均為正實數(shù),,若數(shù)列滿足,,其中為正常數(shù),且.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使得當時,恒成立?若存在,求出使結論成立的的取值范圍和相應的的最小值;若不存在,請說明理由;
(3)若,設數(shù)列對任意的,都有成立,問數(shù)列是不是等比數(shù)列?若是,請求出其通項公式;若不是,請說明理由.

查看答案和解析>>

設數(shù)列{an}的各項均為正實數(shù),bn=log2an,若數(shù)列{bn}滿足b2=0,bn+1=bn+log2p,其中p為正常數(shù),且p≠1.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)M,使得當n>M時,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使結論成立的p的取值范圍和相應的M的最小值;若不存在,請說明理由;
(3)若p=2,設數(shù)列{cn}對任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,問數(shù)列{cn}是不是等比數(shù)列?若是,請求出其通項公式;若不是,請說明理由.

查看答案和解析>>

 

一、選擇題:

1―5 DACBC    6―10 BDCAC    11―12 DA

二、填空題:

13.6或―1    14.    15.180    16.①③

三、解答題:

17.(本小題滿分10分)

    解:

      ………………4分

   (2)

   

      ………………10分

18.(本小題滿分12分)

    解:(1)設中國隊以3:1贏得日本隊為事件A

    則

    答:中國隊以3:1贏得日本隊的概率為   ………………4分

   (2)設中方贏下比賽為事件B

    則

    答:中方贏下比賽的  ………………12分

19.(本小題滿分12分)

    解:(I)由題意

   

    。  ………………6分

   (2)

   

20.(14分)解法一:(1)取PC中點為G,連GF,則GF//CD,AE//CD且

GF=AE=  ∴GF//AE,AEGF是平行四邊形

∴AF//EG,∵EG平面PEC,

AF//平面PEC.   ………………3分

   (2)∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD

∴AB⊥PD∴CD⊥PD

∵CD⊥AD ∴∠ADP為二面角P―CD―B的平面角,∴∠ADP=45°

∵PA⊥AD,∴PA⊥平面ABCD,

延長DA,CE交于一點H,連結PH,則AH=3,

∴PH⊥PD,又PH⊥CD,∴PH⊥平面PCD,

∴∠DPC為平面PEC和平面PAD所成的二面角的平面角, …………6分

   (3)∵VD―PEC=VP―DEC,∴D到平面PEC的距離為 …………12分

解法二:∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD

∴AB⊥PD ∴CD⊥PD

∵CD⊥AD ∴∠ADP為二面角P―CD―B的平面角,∴∠ADP=45°

∵PA⊥AD,∴PA⊥平面ABCD   ………………3分

   (1)以AB為x軸,AD為y軸,AP為z軸建立空間直角坐標系。

   (2)由題意知,平面PAD的法向量

∴平面PEC與平面PAD所成銳二面角的大小為30°  …………8分

   (3)由……12分

21.(本小題滿分12分)

解:(1)

x

―2

(-2,-1)

―1

(-1,1)

―1

(1,2)

2

 

+

0

0

+

 

   ………………6分

   (2)存在,

   

22.(本小題滿分12分)

解:(1)由

可求得⊙O′的方程為  ………………3分

∴AB為⊙O′的直徑,

直線BD的方程為  ………………6分

   (2)設,

 

 


同步練習冊答案