所以橢圓C的方程為.---6分 查看更多

 

題目列表(包括答案和解析)

已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長(zhǎng)是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)Q(1,
1
2
)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

(2013•崇明縣二模)已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長(zhǎng)是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)Q(1,
1
2
)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1、F2為焦點(diǎn)的橢圓的一部分,曲線C2是以原點(diǎn)O為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A(
3
2
6
)
是曲線C1和C2的交點(diǎn).
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn),H為BE中點(diǎn),問
|BE|•|GF2|
|CD|•|HF2|
是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

如圖,精英家教網(wǎng)曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2(1,0)為焦點(diǎn)的拋物線的一部分,A(
3
2
,
6
)
是曲線C1和C2的交點(diǎn).
(I)求曲線C1和C2所在的橢圓和拋物線的方程;
(II)過F2作一條與x軸不垂直的直線,與曲線C2交于C,D兩點(diǎn),求△CDF1面積的取值范圍.

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊(cè)答案