題目列表(包括答案和解析)
(08年安徽信息交流)(本題滿分14分)
設數(shù)列滿足其前項和為,.
(1)求與之間的關系;
(2)求數(shù)列的通項公式;
(3)求證:
(本題滿分14分)為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據尚未完成并有局部污損的頻率分布表和頻數(shù)條形圖,解答下列問題:
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內);
(Ⅱ)補全頻數(shù)條形圖;
(Ⅲ)學校決定成績在75.5~85.5分的學生為二等獎,問該校獲得二等獎的學生約為多少人?
分組 |
頻數(shù) |
頻率 |
50.5~60.5 |
4 |
0.08 |
60.5~70.5 |
|
0.16 |
70.5~80.5 |
10 |
|
80.5~90.5 |
16 |
0.32 |
90.5~100.5 |
|
|
合計 |
50 |
|
(08年龍巖一中沖刺文)(本題滿分14分)已知函數(shù)和(其中),,.
(1)求的取值范圍;
(2)方程有幾個實根?為什么?
(08年安徽信息交流文)(本題滿分14分)
已知函數(shù),在和時取得極值,若對任意
都有: 恒成立,求實數(shù)的取值集合.
(08年廣東佛山質檢理)(本題滿分14分)
數(shù)列和滿足:
(1),;
(2)當時,;
當時,,()。
(Ⅰ)如果,,試求,,,;
(Ⅱ)證明數(shù)列是一個等比數(shù)列;
(Ⅲ)設()是滿足的最大整數(shù),證明.
一、選擇題(每小題5分,共40分)
1.D 2.B 3.B 4.B 5.C 6.D 7.C 8.A
解:5.C ,相切時的斜率為
6.D
7.C
8.A 原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設函數(shù)f(x)=x2009+x,
顯然該函數(shù)為奇函數(shù),且在R上是增函數(shù),則原方程為f(3x+y)+f(x)=0,
即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0
二、填空題(每小題5分,共30分)
9.
10. 位執(zhí)“一般”對應位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.
11.-192
12.;根據題中的信息,可以把左邊的式子歸納為從個球(n個白球,k個黑球中取出m個球,可分為:沒有黑球,一個黑球,……,k個黑球等類,故有種取法.
13.5; 14、;
15.16; 由可化為xy =8+x+y, x,y均為正實數(shù)
xy =8+x+y
(當且僅當x=y等號成立)即xy-2-8可解得,
即xy16故xy的最小值為16.
三、解答題:(本大題共6小題,共80分,解答應寫出文字說明,證明過程或演算步驟)。
16、(本題滿分12分)
解:Ⅰ)在中, 且
cosA=,又A是的內角,∴A= …………6分
(Ⅱ)由正弦定理,又,故 …………8分
即: 故是以為直角的直角三角形 …………10分
又∵A=, ∴B= …………12分
17.(本題滿分14分)
解:(I)所求x的可能取值為6、7、8、9 …………1分
…………7分
(II)
∴線路通過信息量的數(shù)學期望
EX ……13分
答:(I)線路信息暢通的概率是. (II)線路通過信息量的數(shù)學期望是.……14分
18.(本題滿分14分)
解:(Ⅰ)建立如圖所示的空間直角坐標系, ……1分
|