(2)證明:設(shè)點到兩漸近線的距離分別為.兩漸進線的夾角為.則有: . 查看更多

 

題目列表(包括答案和解析)

(2013•東莞二模)如圖,圓O與離心率為
3
2
的橢圓T:
x2
a2
+
y2
b2
=1
(a>b>0)相切于點M(0,1).
(1)求橢圓T與圓O的方程;
(2)過點M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點A、C與點B、D(均不重合).
①若P為橢圓上任一點,記點P到兩直線的距離分別為d1、d2,求
d
2
1
+
d
2
2
的最大值;
②若3
MA
MC
=4
MB
MD
,求l1與l2的方程.

查看答案和解析>>

給出4個命題:
(1)設(shè)橢圓長軸長度為2a(a>0),橢圓上的一點P到一個焦點的距離是
2
3
a
,P到一條準(zhǔn)線的距離是
8
3
a
,則此橢圓的離心率為
1
4

(2)若橢圓
x2
a2
+
y2
b2
=1
(a≠b,且a,b為正的常數(shù))的準(zhǔn)線上任意一點到兩焦點的距離分別為d1,d2,則|d12-d22|為定值.
(3)如果平面內(nèi)動點M到定直線l的距離與M到定點F的距離之比大于1,那么動點M的軌跡是雙曲線.
(4)過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線準(zhǔn)線上的射影分別為A1、B1,則FA1⊥FB1
其中正確命題的序號依次是
(2)(4)
(2)(4)
.(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

已知P點在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為4和2,過P點作焦點所在軸的垂線,它恰好過橢圓的一個焦點,求橢圓方程.

查看答案和解析>>

(12分)已知點在以坐標(biāo)軸為對稱軸的橢圓上,點到兩焦點的距離分別為4和2,過點作焦點所在軸的垂線,它恰好過橢圓的一個焦點,求橢圓方程.

 

 

查看答案和解析>>

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:

(1)已知P點在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為,過P作長軸的垂線恰好過橢圓的一個焦點;

(2)經(jīng)過兩點A(0,2)和B.

查看答案和解析>>


同步練習(xí)冊答案