已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(-2,0),(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,下列結(jié)論:①a<b<c;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4
D
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(其中a>0,b>0,c<0),關(guān)于這個二次函數(shù)的圖象有如下說法:
①圖象的開口一定向上;
②圖象的頂點一定在第四象限;
③圖象與x軸的交點有一個在y軸的右側(cè).
以上說法正確的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A(1,0),B(3,0)兩點,與y軸交于點C(0,3),則二次函數(shù)的解析式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c,其中a>0,b2-4a2c2=0,它的圖象與x軸只有一個交點,交點為A,與y軸交于點B,且AB=2.
(1)求二次函數(shù)解析式;
(2)當b<0時,過A的直線y=x+m與二次函數(shù)的圖象交于點C,在線段BC上依次取D、E兩點,若DE2=BD2+EC2,試確定∠DAE的度數(shù),并簡述求解過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c.
①若b=2a+
12
c,那么函數(shù)圖象一定經(jīng)過哪個定點?
②若a<0且c=0,且對于任意的實數(shù)x,都有y≤1,求證:4a+b2≤0.
③若函數(shù)圖象上兩點(0,y1)和(1,y2)滿足y1•y2>0,且2a+3b+6c=0,試確定二次函數(shù)圖象對稱軸與x軸交點橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(1,3)及部分圖象(如圖所示),其中圖象與橫軸的正半軸交點為(3,0),由圖象可知:
①當x
>1
>1
時,函數(shù)值隨著x的增大而減;
②關(guān)于x的一元二次不等式ax2=bx+c>0的解是
-1<x<3
-1<x<3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于點(-1,0),(x1,0),且1<x1<2,下列結(jié)論正確的個數(shù)為( 。
①b<0;②c<0;③a+c<0;④4a-2b+c>0.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,它與x軸的兩個交點分別為(-1,0),(3,0).對于下列命題:①b-2a=0;②abc<0;③4a-2b+c<0.其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于(1,0)和(x1,0),其中-2<x1<-1,與y軸交于正半軸上一點.下列結(jié)論:①b>0;②ac<
14
b2
;③a>b;④-a<c<-2a.其中所有正確結(jié)論的序號是
②④
②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(-1,-3.2)及部分圖象(如圖所示),其中圖象與橫軸的正半軸交點為(2,0),由圖象可知:
①當x
<-1
<-1
時,函數(shù)值隨著x的增大而減。
②關(guān)于x的一元二次不等式ax2+bx+c>0的解是
x>2或x<-4
x>2或x<-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于(2,0)、(4,0),頂點到x軸的距離為3,求函數(shù)的解析式.

查看答案和解析>>


同步練習冊答案