設(shè)數(shù)列1,(1+2),…,(1+2+…+2n-1),…的前n項和為Sn,則Sn等于( 。
A.2nB.2n-nC.2n+1-nD.2n+1-n-2
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列1,(1+2),…,(1+2+…+2n-1),…的前n項和為Sn,則Sn等于(  )
A、2nB、2n-nC、2n+1-nD、2n+1-n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽模擬 題型:單選題

設(shè)數(shù)列1,(1+2),…,(1+2+…+2n-1),…的前n項和為Sn,則Sn等于(  )
A.2nB.2n-nC.2n+1-nD.2n+1-n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省皖北高三大聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)數(shù)列1,(1+2),…,(1+2+…+2n-1),…的前n項和為Sn,則Sn等于( )
A.2n
B.2n-n
C.2n+1-n
D.2n+1-n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第24課時):第三章 數(shù)列-數(shù)列求和(解析版) 題型:選擇題

設(shè)數(shù)列1,(1+2),…,(1+2+…+2n-1),…的前n項和為Sn,則Sn等于( )
A.2n
B.2n-n
C.2n+1-n
D.2n+1-n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)數(shù)列1,(1+2),…,(1+2+…+2n-1),…的前n項和為Sn,則Sn等于


  1. A.
    2n
  2. B.
    2n-n
  3. C.
    2n+1-n
  4. D.
    2n+1-n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列1,(1+2),…(1+2+22+…+2n-1),…的前n項和為Sn,則Sn=
2n+1-n-2
2n+1-n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知ban-2n=(b-1)Sn
(Ⅰ)證明:當(dāng)b=2時,{an-n•2n-1}是等比數(shù)列;
(Ⅱ)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,a1=1,且對任意正整數(shù)n,點(an+1,Sn)在直線2x+y-2=0上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)是否存在實數(shù)λ,使得數(shù)列{Sn+λ•n+
λ
2n
}
為等差數(shù)列?若存在,求出λ的值;若不存在,則說明理由.
(Ⅲ)求證:
1
6
n
k=1
2-k
(ak+1)(ak+1+1)
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和Sn=
4
3
an-
1
3
×2n+1+
2
3
,n=1,2,3,…
(Ⅰ)求首項a1與通項an;
(Ⅱ)設(shè)Tn=
2n
Sn
,n=1,2,3,…,證明:
n
i=1
Ti
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知Sn=2an-2n+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log
an
n+1
2
,數(shù)列{bn}的前n項和為Bn,若存在整數(shù)m,使對任意n∈N*且n≥2,都有B3n-Bn
m
20
成立,求m的最大值;

查看答案和解析>>


同步練習(xí)冊答案