如果b<0,那么a、a+b、a-b中最小的一個數(shù)是(  )
A.a(chǎn)B.a(chǎn)+bC.a(chǎn)-bD.不能確定
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如果b<0,那么a、a+b、a-b中最小的一個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果b<0,那么a、a+b、a-b中最小的一個數(shù)是( 。
A.a(chǎn)B.a(chǎn)+bC.a(chǎn)-bD.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如果b<0,那么a、a+b、a-b中最小的一個數(shù)是


  1. A.
    a
  2. B.
    a+b
  3. C.
    a-b
  4. D.
    不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:輕松練習(xí)30分(測試卷) 初三代數(shù)下冊 題型:013

老師給出一個函數(shù)y=f(x),四個學(xué)生甲、乙、丙、丁各指出這個函數(shù)的一個性質(zhì)

甲:這個函數(shù)的圖象關(guān)于直線x=1對稱;

乙:當x<0時,y的值隨x的增大而減;

丙:當x>0時,y的值隨x的增大而增大;

丁:當x=0時,y的值不是函數(shù)的最小值.

如果其中恰有三人說得正確,那么這個函數(shù)可能是

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

老師給出一個函數(shù)y=f(x),四個學(xué)生甲、乙、丙、丁各指出這個函數(shù)的一個性質(zhì)

甲:這個函數(shù)的圖象關(guān)于直線x=1對稱;

乙:當x<0時,y的值隨x的增大而減小;

丙:當x>0時,y的值隨x的增大而增大;

丁:當x=0時,y的值不是函數(shù)的最小值.

如果其中恰有三人說得正確,那么這個函數(shù)可能是

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年山東省青島市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044

實際問題:某學(xué)校共有18個教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級,那么全校最少需抽取多少名學(xué)生?

建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:

在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?

為了找到解決問題的辦法,我們可把上述問題簡單化:

(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?

假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);

(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?

我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)

(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?

我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):

……

(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?

我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是________;

(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是________;

(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是________

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是________

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是________

問題解決:(1)請把本題中的“實際問題”轉(zhuǎn)化為一個從口袋中摸球的數(shù)學(xué)模型;

(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省蘇州市吳江市中考數(shù)學(xué)模擬試卷(5月份)(解析版) 題型:解答題

如圖所示,點B坐標為(18,0),點A坐標為(18,6),動點P從點O開始沿OB以每秒3個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒1個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間(0<t≤6),那么,
(1)當t=______時,以點P、B、Q為頂點的三角形與△AOB相似;
(2)若設(shè)四邊形OPQA的面積為y,試寫出y與t的函數(shù)關(guān)系式,并求出t取何值時,四邊形OPQA的面積最。
(3)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù),請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吳江市模擬)如圖所示,點B坐標為(18,0),點A坐標為(18,6),動點P從點O開始沿OB以每秒3個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒1個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間(0<t≤6),那么,
(1)當t=
3或5.4
3或5.4
時,以點P、B、Q為頂點的三角形與△AOB相似;
(2)若設(shè)四邊形OPQA的面積為y,試寫出y與t的函數(shù)關(guān)系式,并求出t取何值時,四邊形OPQA的面積最。
(3)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù),請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,點B坐標為(6,0),點A坐標為(6,12),動點P從點O開始沿OB以每秒1個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒2個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間精英家教網(wǎng)(0<t≤6),那么,
(1)當t為何值時,四邊形OPQA是梯形,此時梯形OPQA的面積是多少?
(2)當t為何值時,以點P、B、Q為頂點的三角形與△AOB相似?
(3)若設(shè)四邊形OPQA的面積為y,試寫出y與t的函數(shù)關(guān)系式,并求出t取何值時,四邊形OPQA的面積最小?
(4)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù)?若存在請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,點B坐標為(6,0),點A坐標為(6,12),動點P從點O開始沿OB以每秒1個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒2個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間(0<t≤6),那么,
(1)當t為何值時,四邊形OPQA是梯形,此時梯形OPQA的面積是多少?
(2)當t為何值時,以點P、B、Q為頂點的三角形與△AOB相似?
(3)若設(shè)四邊形OPQA的面積為y,試寫出y與t的函數(shù)關(guān)系式,并求出t取何值時,四邊形OPQA的面積最小?
(4)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù)?若存在請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案