在△ABC中,a、b、c分別是角A、B、C的對邊,若a=2bcosC,則△ABC的形狀是( 。
A.等腰三角形B.等邊三角形C.直角三角形D.銳角三角形
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,若(a+b+c)(b+c-a)=3bc.
(1)求角A的值;
(2)在(1)的結(jié)論下,若0≤x≤
π2
,求y=cos2x+sinA•sin2x的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,
m
=(2b-
3
c,cosC),
n
=(
3
a,cosA),且
m
n

(Ⅰ)求角A的大;
(Ⅱ)求2cos2B+sin(A-2B)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角∠A、∠B、∠C所對的邊.已知4sinBcos2
B
2
=sin2B+
3

(Ⅰ)求∠B的大。
(Ⅱ)若a=4,△ABC的面積為5
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,且
a+c
a+b
=
b-a
c
,
(Ⅰ)求角B的大。
(Ⅱ)若△ABC最大邊的邊長為
7
,且sinC=2sinA,求最小邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,且bcosA-acosB=c-a.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC的面積是
3
3
4
,且a+c=5,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,a2-c2=
3
ab-b2
,S△ABC=2.
(1)求
CA
CB
的值;
(2)設(shè)函數(shù)y=sin(ωx+φ),(其中φ∈[0,
π
2
],ω>0)
,最小正周期為π,當(dāng)x等于角C時函數(shù)取到最大值,求使該函數(shù)取最小值時的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,且m=(a、b),n=(cosA、cosB),P=(2
2
sin
B+C
2
,2sinA),若m∥n,p2=9,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C所對的邊,滿足a2+c2-b2=ac.
(1)求角B的大;
(2)若x∈[0,π),求函數(shù)f(x)=sin(x-B)+sinx的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B的值;
(Ⅱ)若a+c=4,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,且
cosB
cosC
=-
b
2a+c
,
(1)求角B的大小;
(2)若b=
13
,a+c=4
,求△ABC的面積.

查看答案和解析>>


同步練習(xí)冊答案