已知函數(shù)f(x)=x2-4,若f(-m2-m-1)<f(3),則實(shí)數(shù)m的取值范圍是( 。
A.(-2,2)B.(-1,2)C.(-2,1)D.(-1,1)
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4,若f(-m2-m-1)<f(3),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=x2-4,若f(-m2-m-1)<f(3),則實(shí)數(shù)m的取值范圍是(  )
A.(-2,2)B.(-1,2)C.(-2,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省寧德市部分達(dá)標(biāo)中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函數(shù)f(x)=x2-4,若f(-m2-m-1)<f(3),則實(shí)數(shù)m的取值范圍是( )
A.(-2,2)
B.(-1,2)
C.(-2,1)
D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)f(x)=x2-4,若f(-m2-m-1)<f(3),則實(shí)數(shù)m的取值范圍是


  1. A.
    (-2,2)
  2. B.
    (-1,2)
  3. C.
    (-2,1)
  4. D.
    (-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+c
ax+b
為奇函數(shù),f(1)<f(3),
且不等式0≤f(x)≤
3
2
的解集是{x|-2≤x≤-1或2≤x≤4}.
(1)求a,b,c的值;
(2)是否存在實(shí)數(shù)m使不等式f(-2+sinθ)<-m2+
3
2
對(duì)一切θ∈R成立?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
x2+c
ax+b
為奇函數(shù),f(1)<f(3),
且不等式0≤f(x)≤
3
2
的解集是{x|-2≤x≤-1或2≤x≤4}.
(1)求a,b,c的值;
(2)是否存在實(shí)數(shù)m使不等式f(-2+sinθ)<-m2+
3
2
對(duì)一切θ∈R成立?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R,a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為
π
4
,問(wèn):m在什么范圍取值時(shí),對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f′(x)]
在區(qū)間[t,3]上總存在極值?
(Ⅲ)當(dāng)a=2時(shí),設(shè)函數(shù)h(x)=(p-2)x-
p+2e
x
-3
,若在區(qū)間[1,e]上至少存在一個(gè)x0,使得h(x0)>f(x0)成立,試求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)y=f(x)的圖象在x=4處的切線的斜率為
3
2
,若函數(shù)g(x)=
1
3
x3+x2[f′(x)+
m
2
]在區(qū)間(1,3)上不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1,記函數(shù)f(x)的定義域?yàn)镈.

(1)求函數(shù)f(x)的定義域D;

(2)若函數(shù)f(x)的最小值為﹣4,求a的值;

(3)若對(duì)于D內(nèi)的任意實(shí)數(shù)x,不等式﹣x2+2mx﹣m2+2m<1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=alnx-ax-3(a∈R,a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為
π
4
,問(wèn):m在什么范圍取值時(shí),對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f′(x)]
在區(qū)間[t,3]上總存在極值?
(Ⅲ)當(dāng)a=2時(shí),設(shè)函數(shù)h(x)=(p-2)x-
p+2e
x
-3
,若在區(qū)間[1,e]上至少存在一個(gè)x0,使得h(x0)>f(x0)成立,試求實(shí)數(shù)p的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案