已知:函數(shù)f(x)=sin(ωx+
π
4
)
圖象在區(qū)間[0,1]上僅有兩條對(duì)稱軸,且ω∈N*,那么符合條件的ω值有( 。﹤(gè).
A.1B.2C.3D.4
D
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=sin(ωx+
π
4
)
圖象在區(qū)間[0,1]上僅有兩條對(duì)稱軸,且ω∈N*,那么符合條件的ω值有(  )個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:函數(shù)f(x)=sin(ωx+
π
4
)
圖象在區(qū)間[0,1]上僅有兩條對(duì)稱軸,且ω∈N*,那么符合條件的ω值有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(π-2x),g(x)=2cos2x,給出下列四個(gè)結(jié)論:
①函數(shù)f(x)在區(qū)間[
π
4
,
π
2
]上為增函數(shù)
②函數(shù)y=f(x)+g(x)的最小正周期為2π
③函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x=
π
8
對(duì)稱
④將函數(shù)f(x)的圖象向右平移
π
2
個(gè)單位,再向上平移1個(gè)單位得到函數(shù)g(x)的圖象.
其中正確的結(jié)論是
.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=sin(π-2x),g(x)=2cos2x,給出下列四個(gè)結(jié)論:
①函數(shù)f(x)在區(qū)間[
π
4
,
π
2
]上為增函數(shù)
②函數(shù)y=f(x)+g(x)的最小正周期為2π
③函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x=
π
8
對(duì)稱
④將函數(shù)f(x)的圖象向右平移
π
2
個(gè)單位,再向上平移1個(gè)單位得到函數(shù)g(x)的圖象.
其中正確的結(jié)論是______.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省廣州市2012屆高三上學(xué)期調(diào)研測(cè)數(shù)學(xué)理科試卷 題型:013

已知函數(shù)f(x)=sin(2x+)(x∈R),給出下面四個(gè)命題:①函數(shù)f(x)的最小正周期為π;②函數(shù)f(x)是偶函數(shù);③函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱;④函數(shù)f(x)在區(qū)間[0,]上是增函數(shù),其中正確命題的個(gè)數(shù)是

[  ]
A.

1個(gè)

B.

2個(gè)

C.

3個(gè)

D.

4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①已知函數(shù)y=sin2x+acos2x的圖象關(guān)于直線x=-
π
3
對(duì)稱,則a的值為
3
3
;
②函數(shù)y=lgsin(
π
4
-2x)
的單調(diào)增區(qū)間是[kπ-
π
8
, kπ+
8
)  (k∈Z)

③設(shè)p=sin15°+cos15°,q=sin16°+cos16°,r=p•q,則p、q、r的大小關(guān)系是p<q<r;
④要得到函數(shù)y=cos2x-sin2x的圖象,需將函數(shù)y=
2
cos2x
的圖象向左平移
π
8
個(gè)單位;
⑤函數(shù)f(x)=sin(2x+θ)-
3
cos(2x+θ)
是偶函數(shù)且在[0,
π
4
]
上是減函數(shù)的θ的一個(gè)可能值是
6
.其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列命題:
①函數(shù)y=sin(
π
4
-2x)
的單增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)

②已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
③函數(shù)y=f(x+1)與y=f-1(x)-1的圖象關(guān)于直線x-y=0對(duì)稱;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)

則真命題的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列命題:
①函數(shù)y=sin(
π
4
-2x)
的單增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)
;
②已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
③函數(shù)y=f(x)與y=f-1(x)-1的圖象關(guān)于直線x-y+1=0對(duì)稱;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)
;
⑤若sinx+siny=
1
3
,則siny-cos2x
的最大值為
4
3

則真命題的序號(hào)是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下面四個(gè)命題:
①已知函數(shù)f(x)=sin x,在區(qū)間[0,π]上任取一點(diǎn)x0,則使得f(x0)>的概率為
②函數(shù)y=sin 2x的圖象向左平移個(gè)單位得到函數(shù)y=sin的圖象;
③命題“?x∈R,x2-x+1≥”的否定是“?x0∈R,x02-x0+1<”;
④若函數(shù)f(x)是定義在R上的奇函數(shù),則f(x+4)=f(x),則f(2 012)=0.
其中所有正確命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下面四個(gè)命題:
①已知函數(shù)f(x)=sin x,在區(qū)間[0,π]上任取一點(diǎn)x0,則使得f(x0)>的概率為;
②函數(shù)y=sin 2x的圖象向左平移個(gè)單位得到函數(shù)y=sin的圖象;
③命題“?x∈R,x2-x+1≥”的否定是“?x0∈R,x02-x0+1<”;
④若函數(shù)f(x)是定義在R上的奇函數(shù),則f(x+4)=f(x),則f(2 012)=0.
其中所有正確命題的序號(hào)是________.

查看答案和解析>>


同步練習(xí)冊(cè)答案