【題目】如圖所示的一塊地(圖中陰影部分),∠ADC=90°,AD=12CD=9AB=25,BC=20

(1)求∠ACB的度數(shù);

(2)求陰影部分的面積。

【答案】1)∠ACB=90°;(296

【解析】

1)先根據(jù)勾股定理求出AC的長,再根據(jù)勾股定理的逆定理判斷出∠ACB的度數(shù);
2)根據(jù)S陰影=AC×BC-AD×CD即可得出結(jié)論.

解:在RtADC中,
AD=12,CD=9
AC2=AD2+CD2=122+92=225,
AC=15(取正值).
在△ABC中,∵AC2+BC2=152+202=625,AB2=252=625
AC2+BC2=AB2,
∴△ACB為直角三角形,∠ACB=90°.

2S陰影=AC×BC-AD×CD=×15×20-×12×9=96
答:陰影部分的面積為96

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D的中點,作DEAC,交AB的延長線于點F,連接DA

1)求證:EF為半圓O的切線;

2)若DA=DF=,求陰影區(qū)域的面積.(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線上,線段,動點出發(fā),以每秒2個單位長度的速度在直線上運動.的中點,的中點,設(shè)點的運動時間為秒.

1)若點在線段上的運動,當(dāng)時,________;

2)若點在射線上的運動,當(dāng)時,求點的運動時間的值;

3)當(dāng)點在線段的反向延長線上運動時,線段AB、PM、PN有怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點,,對應(yīng)的數(shù)分別為-2,0,6,點是數(shù)軸上的一個動點.

(1)設(shè)點對應(yīng)的數(shù)為.

①若點到點和點的距離相等,則的值是 ;

②若點在點的左側(cè),則 , (用含的式子表示);

(2)若點以每秒1個單位長度的速度從點向右運動,同時點以每秒3個單位長度的速度向左運動,點以每秒12個單位長度的速度向右運動,在運動過程中,點和點分別是的中點,設(shè)運動時間為

①求的長(用含的式子表示);

②當(dāng)時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1y軸于點A,交x軸正半軸于點B(4,0) ,與過A點的直線相交于另一點D(3,) ,過點DDCx軸,垂足為C

(1)求拋物線的表達(dá)式;

(2)點P在線段OC上(不與點O,C重合),過PPNx軸,交直線ADM,交拋物線于點N,連接CM,求△PCM 面積的最大值;

(3)若P x 軸正半軸上的一動點,設(shè)OP 的長為t.是否存在t,使以點MC,D,N 為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.下表是該市民一戶一表"生活用水階梯式計費價格表的部分信息:

自來水銷售價格

污水處理價格

每戶每月用水量

單價:/

單價:/

噸及以下

超過噸但不超過噸的部分

超過噸的部分

(說明:每戶生產(chǎn)的污水量等于該戶自來水用量;②水費=自來水費用+污水處理費)

已知小王家20187月用水噸,交水費.8月份用水噸,交水費.

1)求的值;

2)如果小王家9月份上交水費元,則小王家這個月用水多少噸?

3)小王家10月份忘記了去交水費,當(dāng)他11月去交水費時發(fā)現(xiàn)兩個月一共用水50噸,其中10月份用水超過噸,一共交水費元,其中包含元滯納金,求小王家11月份用水多少噸? (滯納金:因未能按期繳納水費,逾期要繳納的罰款金額”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程(x+1)(x﹣2)=10根的情況是( 。

A. 無實數(shù)根 B. 有兩個正根

C. 有兩個根,且都大于﹣1 D. 有兩個根,其中一根大于2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市在今年對全市6000名八年級學(xué)生進(jìn)行了一次視力抽樣調(diào)查,并根據(jù)統(tǒng)計數(shù)據(jù),制作了如圖所示的統(tǒng)計表和統(tǒng)計圖.

組別

視力

頻數(shù)(人)

20

70

10

請根據(jù)圖表信息回答下列問題:

1)求抽樣調(diào)查的人數(shù);

2________________________,_____________;

3)補全頻數(shù)分布直方圖;

4)若視力在4.9以上(含4.9)均屬正常,則視力正常的人數(shù)占被統(tǒng)計人數(shù)的百分比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BCAB的夾角分別為45°68°,若點C到地面的距離CD28cm,坐墊中軸E處與點B的距離BE4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

同步練習(xí)冊答案