【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E分別在邊BC 和AC上,若AD=AE,則下列結(jié)論錯(cuò)誤的是( )
A.∠ADB=∠ACB+∠CAD
B.∠ADE=∠AED
C.∠CDE= ∠BAD
D.∠AED=2∠ECD
【答案】D
【解析】解:∵∠ADB是△ACD的外角,
∴∠ADB=∠ACB+∠CAD,選項(xiàng)A正確;
∵AD=AE,
∴∠ADE=∠AED,選項(xiàng)B正確;
∵AB=AC,
∴∠B=∠C,
∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠AED=∠CDE+∠C,
∴∠CDE+∠C+∠CDE=∠B+∠BAD,
∴∠CDE= ∠BAD,選項(xiàng)C正確;
∵∠AED=∠ECD+∠CDE,∠ECD≠∠CDE,
∴選項(xiàng)D錯(cuò)誤;
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,當(dāng)x>0時(shí),y隨x的增大而增大的是( )
A.y=﹣2x+1
B.y=﹣x2﹣1
C.y=(x+1)2﹣1
D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=﹣ 的圖象交于A、B兩點(diǎn),與坐標(biāo)軸交于M、N兩點(diǎn).且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x3﹣3x的圖象如圖所示,則以下關(guān)于該函數(shù)圖象及其性質(zhì)的描述正確的是( )
A.函數(shù)最大值為2
B.函數(shù)圖象最低點(diǎn)為(1,﹣2)
C.函數(shù)圖象關(guān)于原點(diǎn)對稱
D.函數(shù)圖象關(guān)于y軸對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩點(diǎn)A、B.
(1)畫出符合要求的圖形
①畫線段AB;
②延長線段AB到點(diǎn)C,使BC=AB;
③反向延長線段AB到點(diǎn)D,使DA=2AB;
④分別取BC、AD的中點(diǎn)M、N.
(2)在(1)的基礎(chǔ)上,已知線段AB的長度是4cm,求線段MN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動(dòng)之一,某校七年級(1)班班長對全班50名學(xué)生在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖.
請根據(jù)以上信息回答:
(1)該班同學(xué)所搶紅包金額的眾數(shù)是 , 中位數(shù)是;
(2)該班同學(xué)所搶紅包的平均金額是多少元?
(3)若該校共有18個(gè)班級,平均每班50人,請你估計(jì)該校學(xué)生春節(jié)期間所搶的紅包總金額為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD 相交于點(diǎn)O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點(diǎn)引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 中,∠CAB=70°,在同一平面內(nèi), 將 繞點(diǎn)A旋轉(zhuǎn)到 的位置,使得CC′∥AB,則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)寫出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c+k=0有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com