【題目】如圖,已知兩點A、B

(1)畫出符合要求的圖形

畫線段AB;

延長線段AB到點C,使BCAB

反向延長線段AB到點D,使DA2AB;

分別取BCAD的中點M、N

(2)(1)的基礎上,已知線段AB的長度是4cm,求線段MN的長度.

【答案】(1)見解析; (2)MN10cm

【解析】

1)根據(jù)題意,畫出圖形即可;

2)先求出BC4cmDA8cm,再根據(jù)BC、AD的中點M、N,求出BM2cmAN4cm,根據(jù)MNAN+AB+BM即可解答.

(1)如圖,

(2)AB4cm,BCAB,DA2AB,

BC4cmDA8cm,

BCAD的中點M、N,

BM2cmAN4cm,

MNAN+AB+BM4+4+210cm

故答案為:(1)見解析; (2)MN10cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC為銳角,點D為直線BC上一動點,以AD為直角邊且在AD的右側作等腰直角三角形ADE,∠DAE90°,ADAE

1)如果ABAC,∠BAC90°.①當點D在線段BC上時,如圖1,線段CE、BD的位置關系為___________,數(shù)量關系為___________

②當點D在線段BC的延長線上時,如圖2,①中的結論是否仍然成立,請說明理由.

2)如圖3,如果ABAC,∠BAC90°,點D在線段BC上運動。探究:當∠ACB多少度時,CEBC?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點和點在數(shù)軸上對應的數(shù)分別為,且

1)求線段的長;

2)點在數(shù)軸上所對應的數(shù)為,且是方程的解,點在線段上,并且,請求出點在數(shù)軸上所對應的數(shù);

3)在(2)的條件下,線段分別以個單位長度/秒和個單位長度/秒的速度同時向右運動,運動時間為秒,為線段的中點,為線段的中點,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延長線于點E.
(1)求證:∠BCA=∠BAD;
(2)求DE的長;
(3)求證:BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有個點,點1次向上跳動1個單位至點,緊接著第2次向左跳動2個單位至點,第3次向上跳動1個單位到達,第4次向右跳動3個單位到達,第5次又向上跳動1個單位,第6次向左跳動4個單位,…,依此規(guī)律跳動下去,點的坐標為( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D,E分別在邊BC 和AC上,若AD=AE,則下列結論錯誤的是(
A.∠ADB=∠ACB+∠CAD
B.∠ADE=∠AED
C.∠CDE= ∠BAD
D.∠AED=2∠ECD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,ABC的平分線交CD于點F,交AD的延長線于點H,AGBH交于點O,連接BE,下列結論錯誤的是(  )

A. BO=OH B. DF=CE C. DH=CG D. AB=AE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:不等式 ≤2+x
(1)解該不等式,并把它的解集表示在數(shù)軸上;
(2)若實數(shù)a滿足a>2,說明a是否是該不等式的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AC=BC,∠ACB=90°DAC延長線上一點,連接BD,在BC邊上取一點E,使得CD=CE,連接AE并延長交BD于點F

1)依題意補全圖形;

2)求證:AFBD

3)連接CF,點C 關于BD的對稱點是Q,連接FQ,用等式表示線段CF,CQ之間的數(shù)量關系,并加以證明.

查看答案和解析>>

同步練習冊答案