【題目】某校決定購買一些跳繩和排球,需要的跳繩數(shù)量是排球數(shù)量的3倍,購買的總費(fèi)用不低于2200元,但不高于2500元.

(1)商場內(nèi)跳繩的售價(jià)為20元/根,排球的售價(jià)為50元/個(gè),按照學(xué)校所定的費(fèi)用,有幾種購買方案?每種方案中跳繩和排球數(shù)量各為多少?

(2)在(1)的方案中,哪一種方案的總費(fèi)用最少?最少的費(fèi)用是多少元?

【答案】(1)有三種購買方案:方案一:跳繩60根,排球20個(gè);方案二:跳繩63根,排球21個(gè);方案三:跳繩66根,排球22個(gè);

(2)方案一購買的總數(shù)量最少,所以總費(fèi)用最少,最少費(fèi)用為2200元.

【解析】

(1)設(shè)購買跳繩x根,則購買排球x個(gè),由題意得到關(guān)于x的不等式組,解得60≤x≤68,再根據(jù)x,x都必須為整數(shù),得到x,x的可能值;

(2)根據(jù)(1)即可求得答案.

(1)設(shè)購買跳繩x根,則購買排球x個(gè),

根據(jù)題意得:,

解得60≤x≤68,

∵x為正整數(shù),

∴x可取60,61,62,63,64,65,66,67,68,

x也必需是整數(shù),

x可取20,21,22;

有三種購買方案:

方案一:跳繩60根,排球20個(gè);

方案二:跳繩63根,排球21個(gè);

方案三:跳繩66根,排球22個(gè).

(2)在(1)中,方案一購買的總數(shù)量最少,所以總費(fèi)用最少,

最少費(fèi)用為:60×20+20×50=2200.

答:方案一購買的總數(shù)量最少,所以總費(fèi)用最少,最少費(fèi)用為2200元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在第一象限,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,并把AOP繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使邊AO與AB重合,得到ABD.

(1)求直線AB的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(,0)時(shí),求此時(shí)DP的長及點(diǎn)D的坐標(biāo);

(3)是否存在點(diǎn)P,使OPD的面積等于?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B⊙O上兩點(diǎn),△OAB外角的平分線交⊙O于另一點(diǎn)C,CD⊥ABAB的延長線于D.

(1)求證:CD⊙O的切線;

(2)E的中點(diǎn),F⊙O上一點(diǎn),EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長線上一點(diǎn),過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等邊三角形,P為平面內(nèi)的一個(gè)動(dòng)點(diǎn),BP=BA0<PBC<180 ,DB平分∠PBC,且DB=DA

1)當(dāng)BPBA重合時(shí)(如圖1),求∠BPD的度數(shù);

2)當(dāng)BP在∠ABC的內(nèi)部時(shí)(如圖2),求∠BPD的度數(shù);

3)當(dāng)BP在∠ABC的外部時(shí),請(qǐng)你直接寫出∠BPD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BECE分別是∠ABC和∠ACB的平分線,過點(diǎn)EDFBCABD,交ACF,若AB =5AC =4,則ADF周長為( 。.

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長均為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC和△DEF(頂點(diǎn) 為網(wǎng)格線的交點(diǎn)),以及經(jīng)過格點(diǎn)的直線m.

(1)畫出△ABC關(guān)于直線m對(duì)稱的△A1B1C1;

(2)將△DEF先向左平移5個(gè)單位長度,再向下平移4個(gè)單位長度,畫出平移后得到的△D1E1F1;

(3)求∠A+∠E= ________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠B=∠D90°,∠C72°,在BC、CD上分別找一點(diǎn)MN,使AMN的周長最小時(shí),∠AMN+ANM的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC10,高BD8,AE平分∠BAC,則△ABE的面積為________

查看答案和解析>>

同步練習(xí)冊(cè)答案