(1)計算:(
2
+1)0-2-1+
27
-6sin60°;
(2)先化簡,再求值:
1
x2-x
-
x-2
x2-2x+1
÷
x-2
x-1
,其中x=
3
考點:分式的化簡求值,實數(shù)的運算,零指數(shù)冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值
專題:
分析:(1)分別根據(jù)0指數(shù)冪及負整數(shù)指數(shù)冪的計算法則,特殊角的三角函數(shù)值計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;
(2)先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.
解答:解:(1)原式=1-
1
2
+3
3
-6×
3
2

=
1
2
+3
3
-3
3

=
1
2
;

(2)原式=
1
x(x-1)
-
x-2
(x-1)2
x-1
x-2

=
1
x(x-1)
-
1
x-1

=
1-x
x(x-1)

=-
1
x

當x=
3
時,原式=-
1
3
=-
3
3
點評:本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

關(guān)于x的不等式2x-a≤0只有三個正整數(shù)解,那么這時正整數(shù)a的取值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A(2,5)在反比例函數(shù)y=
k
x
的圖象上,過點A的直線y=x+b交x軸于點B.
(1)求k和b的值;
(2)求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,我們不妨把橫坐標與縱坐標相等的點稱為“夢之點”,例如點(-1,-1),(0,0),(
2
,
2
),…都是“夢之點”,顯然,這樣的“夢之點”有無數(shù)個.
(1)若點P(2,m)是反比例函數(shù)y=
n
x
(n為常數(shù),n≠0)的圖象上的“夢之點”,求這個反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s-1(k,s是常數(shù))的圖象上存在“夢之點”嗎?若存在,請求出“夢之點”的坐標;若不存在,請說明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個不同的“夢之點”A(x1,x1),B(x2,x2),且滿足-2<x1<2,|x1-x2|=2,令t=b2-2b+
157
48
,試求出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我市某超市舉行店慶活動,對甲、乙兩種商品實行打折銷售.打折前,購買3件甲商品和1件乙商品需用190元;購買2件甲商品和3件乙商品需用220元.而店慶期間,購買10件甲商品和10件乙商品僅需735元,這比不打折前少花多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=BC,以AB為直徑的⊙O與AC交于點D,過點D作DE⊥BC于點E.
(1)求證:直線DE是⊙O的切線;
(2)當cosA=
4
5
,AC=8時,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知墻高AB為6.5米,將一長為6米的梯子CD斜靠在墻面,梯子與地面所成的角∠BCD=55°,此時梯子的頂端與墻頂?shù)木嚯xAD為多少米?(結(jié)果精確到0.1米) (參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:50°-15°30′=
 

查看答案和解析>>

同步練習冊答案