【題目】(1)問(wèn)題發(fā)現(xiàn):
如圖(1),和都是等腰直角三角形,,點(diǎn)在線段上,點(diǎn)在線段上,請(qǐng)直接寫出線段與的數(shù)量關(guān)系:______;(直接填寫結(jié)果)
(2)操作探究:
如圖(2),將圖中的繞點(diǎn)順時(shí)針旋轉(zhuǎn)(),I小題中線段與線段的數(shù)量關(guān)系是否成立?如果不成立,說(shuō)明理由,如果成立,請(qǐng)你結(jié)合圖(2)給出的情形進(jìn)行證明;
(3)解決問(wèn)題:
將圖(1)中的繞點(diǎn)順時(shí)針旋轉(zhuǎn),若,在備用圖中畫出旋轉(zhuǎn)圖形,并判斷以、、、四個(gè)點(diǎn)為頂點(diǎn)的四邊形的形狀.(不寫證明過(guò)程)
【答案】(1);(2)(1)中結(jié)論仍成立;(3)詳見解析
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)可得AB=AC,AE=AD,再根據(jù)等量關(guān)系可得線段BE與線段CD的關(guān)系;
(2)根據(jù)等腰直角三角形的性質(zhì)可得AB=AC,AE=AD,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAE=∠CAD,根據(jù)SAS可證△BAE≌△CAD,根據(jù)全等三角形的性質(zhì)即可求解;
(3)根據(jù)題意作圖,根據(jù)等腰三角形及旋轉(zhuǎn)的特點(diǎn)證明即可求解.
(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
∴AEAB=ADAC,
∴BE=CD;
(2)(1)中結(jié)論仍成立,理由:
∵和都是等腰直角三角形,,
,,
由旋轉(zhuǎn)的性質(zhì)得,,
在與中,,
∴
∴.
(3)畫圖如下:
∵,△AED是等腰直角三角形,
∴AC=CD,AC⊥DE
又∵△ABC是等腰直角三角形,
∴AB=AC=CD,AB⊥AC
∴
則以、、、四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A點(diǎn),D點(diǎn)分別在x軸、y軸上,對(duì)角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過(guò)矩形對(duì)角線的交點(diǎn)E,若點(diǎn)A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每個(gè)人都應(yīng)懷有對(duì)水的敬畏之心,從點(diǎn)滴做起,節(jié)水、愛水,保護(hù)我們生活的美好世界.某地近年來(lái)持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價(jià)”計(jì)費(fèi)方法,具體方法:每戶每月用水量不超過(guò)4噸的每噸2元;超過(guò)4噸而不超過(guò)6噸的,超出4噸的部分每噸4元;超過(guò)6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個(gè)月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是( 。
用水量x(噸) | 3 | 4 | 5 | 6 | 7 |
頻數(shù) | 1 | 2 | 5 | 4﹣x | x |
A. 平均數(shù)、中位數(shù) B. 眾數(shù)、中位數(shù) C. 平均數(shù)、方差 D. 眾數(shù)、方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,是邊的中線,于,連結(jié),點(diǎn)在射線上(與,不重合)
(1)如果
①如圖1,
②如圖2,點(diǎn)在線段上,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,連結(jié),補(bǔ)全圖2猜想、之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖3,若點(diǎn)在線段 的延長(zhǎng)線上,且span>,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連結(jié),請(qǐng)直接寫出、、三者的數(shù)量關(guān)系(不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中 過(guò)點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y1=x+m與x軸、y軸分別交于點(diǎn)A、B,與雙曲線(x<0)分別交于點(diǎn)C(-1,2)、D(a,1).
(1)分別求出直線及雙曲線的解析式;
(2)利用圖象直接寫出,當(dāng)x在什么范圍內(nèi)取值時(shí),y1>y2.
(3)請(qǐng)把直線上y1<y2時(shí)的部分用黑色筆描粗一些.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙和⊙相交于A、B兩點(diǎn),與AB交于點(diǎn)C,的延長(zhǎng)線交⊙于點(diǎn)D,點(diǎn)E為AD的中點(diǎn),AE=AC,聯(lián)結(jié).
(1)求證:;
(2)如果,,求⊙的半徑長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com