【題目】我們規(guī)定在網(wǎng)格內(nèi)的某點(diǎn)進(jìn)行一定條件操作到達(dá)目標(biāo)點(diǎn):H代表所有的水平移動(dòng),H1代表向右水平移動(dòng)1個(gè)單位長(zhǎng)度,H-1代表向左平移1個(gè)單位長(zhǎng)度;S代表上下移動(dòng),S1代表向上移動(dòng)1個(gè)單位長(zhǎng)度,S-1代表向下移動(dòng)1個(gè)單位長(zhǎng)度,表示點(diǎn)P在網(wǎng)格內(nèi)先一次性水平移動(dòng),在此基礎(chǔ)上再一次性上下移動(dòng);表示點(diǎn)P在網(wǎng)格內(nèi)先一次性上下移動(dòng),在此基礎(chǔ)上再一次性水平移動(dòng).

1)如圖,在網(wǎng)格中標(biāo)出移動(dòng)后所到達(dá)的目標(biāo)點(diǎn);

2)如圖,在網(wǎng)格中的點(diǎn)B到達(dá)目標(biāo)點(diǎn)A,寫出點(diǎn)B的移動(dòng)方法________________

3)如圖,在網(wǎng)格內(nèi)有格點(diǎn)線段AC,現(xiàn)需要由點(diǎn)A出發(fā),到達(dá)目標(biāo)點(diǎn)D,使得A、CD三點(diǎn)構(gòu)成的格點(diǎn)三角形是等腰直角三角形,在圖中標(biāo)出所有符合條件的點(diǎn)D的位置并寫出點(diǎn)A的移動(dòng)方法.

【答案】1)見解析;(2;(3)見解析.

【解析】

1)根據(jù)題意,表示點(diǎn)A先向右水平移動(dòng)1個(gè)單位,再向上移動(dòng)2個(gè)單位,據(jù)此即可標(biāo)出點(diǎn)

2)由點(diǎn)B到達(dá)目標(biāo)點(diǎn)A,可以先向下移動(dòng)3個(gè)單位,再向左水平移動(dòng)2個(gè)單位,或先向左水平移動(dòng)2個(gè)單位,再向下移動(dòng)3個(gè)單位,據(jù)此解答即可;

3)先找出全部符合題意的點(diǎn)D,再根據(jù)點(diǎn)的位置寫出移動(dòng)方法即可.

解:(1)目標(biāo)點(diǎn)的位置如圖1所示;

2)由點(diǎn)B到達(dá)目標(biāo)點(diǎn)A,可以先向下移動(dòng)3個(gè)單位,再向左水平移動(dòng)2個(gè)單位,或先向左水平移動(dòng)2個(gè)單位,再向下移動(dòng)3個(gè)單位,所以點(diǎn)B的移動(dòng)方法是:

故答案為:;

3)如圖2所示,使得A、C、D三點(diǎn)構(gòu)成的格點(diǎn)三角形是等腰直角三角形的點(diǎn)D共有5個(gè),分別是:D1D2、D3D4、D5;

AD1的移動(dòng)方法是:;

AD2的移動(dòng)方法是:;

AD3的移動(dòng)方法是:;

AD4的移動(dòng)方法是:;

AD5的移動(dòng)方法是:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,M經(jīng)過(guò)原點(diǎn)O(0,0),點(diǎn)A,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BDx軸于點(diǎn)C,且∠COD=∠CBO

(1)請(qǐng)直接寫出M的直徑,并求證BD平分∠ABO;

(2)在線段BD的延長(zhǎng)線上尋找一點(diǎn)E,使得直線AE恰好與M相切,求此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于﹣1的實(shí)數(shù)根.其中正確的結(jié)論有( 。

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線經(jīng)過(guò),兩點(diǎn),且滿足,過(guò)點(diǎn)軸,交直線于點(diǎn),連接.

1)求直線的函數(shù)表達(dá)式;

2)在直線上是否存在一點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線交直線、于點(diǎn)、,若是等腰直角三角形,請(qǐng)直接寫出符合條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在直角梯形OABC中,ABOC,BCx軸于點(diǎn)C、A(1,1)、B(3,1).動(dòng)點(diǎn)PO點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),OPQ與直角梯形OABC重疊部分的面積為S.

(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;

(2)求St的函數(shù)關(guān)系式;

(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)OQ在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點(diǎn)為(﹣1,0),下列結(jié)論:①abc>0;②b2﹣4ac=0;③a>2;④方程ax2+bc+c=﹣2的根為x1=x2=﹣1;⑤若點(diǎn)B(﹣,y1),C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y2<y1,其中正確的個(gè)數(shù)是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200/臺(tái).經(jīng)過(guò)市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).

1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張矩形紙片ABCD折疊,使兩個(gè)頂點(diǎn)A、C重合,折痕為FG,若AB4,BC8

求(1)線段BF的長(zhǎng);

2)判斷AGF形狀并證明;

3)求線段GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAOB,ABx軸于C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.

(1)求反比例函數(shù)y=的表達(dá)式;

(2)在x軸上存在一點(diǎn)P,使SAOP= SAOB求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案