【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>:

(1)x2=49

(3)2x2+4x-3=0(公式法) (4)(x+8)(x+1)=-12

【答案】(1) x1=7,x2=-7;(2) (3) ;(4)x1=-4,x2=-5

【解析】

1)用直接開平方法即可求解;

(2)用因式分解法即可求解;

3)根據(jù)題意用公式法求解即可;

4)用因式分解法即可,需注意先要將方程化為一般式.

(1)直接開平方得x=±7,

x1=7,x2=-7

(2)移項(xiàng),得(2x+3)2-4(2x+3)=0,

分解因式,得(2x+3)[(2x+3)-4]=0,

2x+3=0,2x+3-4=0,

(3)a=2,b=4,c=-3,

b2-4ac=42-4×2×(-3)=40,

,

;

(4)化成一般式,得 x2+9x+20=0,

分解因式得 ( x+4)(x+5)=0,

x+4=0,x+5=0,

x1=-4,x2=-5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示.

(1)確定二次函數(shù)的解析式;

(2)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,下列說法正確的有____________.

;;

④當(dāng)時(shí),yx的增大而增大;

⑤方程的根是,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們?nèi)y量一座古塔CD的高度.他們首先從A處安置測傾器,測得塔頂C的仰角∠CFE=21°,然后往塔的方向前進(jìn)50米到達(dá)B處,此時(shí)測得仰角∠CGE=37°,已知測傾器高1.5米,請你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD的高度.

(參考數(shù)據(jù):sin37° ,tan37° ,sin21°≈,tan21°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,A=36°,ABC的平分線交ACD,

(1)求證:ABC∽△BCD;

(2)BC=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長是6+4,點(diǎn)O1,O2分別是ABF,CDE的內(nèi)心,則O1O2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣6x+k+3=0有兩個(gè)不相等的實(shí)數(shù)根

(1)求k的取值范圍;

(2)若k為大于3的整數(shù),且該方程的根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙OAB于點(diǎn)D,切線DEAC于點(diǎn)E

(1)求證:∠A=∠ADE;

(2)若AD=16,DE=10,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+1x+m2+1)=0有兩個(gè)相等的實(shí)數(shù)根.

1)求m的值;

2)將y=﹣x2+m+1xm2+1)的圖象向左平移3個(gè)單位長度,再向上平移2個(gè)單位長度,寫出變化后函數(shù)的表達(dá)式;

3)在(2)的條件下,當(dāng)直線y2x+n與變化后的圖象有公共點(diǎn)時(shí),求n24n的最小值

查看答案和解析>>

同步練習(xí)冊答案